SystemML大规模机器学习,优化算子融合方案的研究 摘要 许多大规模机器学习(ML)系统允许通过线性代数程序指定定制的ML算法,然后自动生成有效的执行计划.在这种情况下,优化的机会融合基本算子的熔合链的算子是无处不在的.这些机会包括 (1)更少的物化中间表示 (2)更少的输入数据扫描,以及 (3)利用算子链上的稀疏性. 自动算子融合消除了手写的需要 融合运算符并显著提高 复杂的或以前看不见的算子链.然而,现有的融合启发式算法,很难找到好的融合方法. 复杂DAG计划或局部分布式算子的混合计划.…