Flink JobManager 和 TaskManager 原理】的更多相关文章

转自:https://www.cnblogs.com/nicekk/p/11561836.html 一.概述 Flink 整个系统主要由两个组件组成,分别为 JobManager 和 TaskManager,Flink 架构也遵循 Master - Slave 架构设计原则,JobManager 为 Master 节点,TaskManager 为 Worker (Slave)节点. 所有组件之间的通信都是借助于 Akka Framework,包括任务的状态以及 Checkpoint 触发等信息.…
JobManager 的作用 https://t.zsxq.com/2VRrbuf 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门 3.Flink 从0到1学习 -- Flink 配置文件详解 4.Flink 从0到1学习 -- Data Source 介绍 5.Flink 从0到1学习 -- 如何自定义 Data Source ? 6.Flink 从0到1学习 --…
Flink介绍-<Fink原理.实战与性能优化>读书笔记 1.1 Apache Flink是什么? 在当代数据量激增的时代,各种业务场景都有大量的业务数据产生,对于这些不断产生的数据应该如何进行有效的处理,成为当下大多数公司所面临的问题.随着雅虎对hadoop的开源,越来越多的大数据处理技术开始涌入人们的视线,例如目前比较流行的大数据处理引擎Apache Spark,基本上已经取代了MapReduce成为当前大数据处理的标准.但是随着数据的不断增长,新技术的不断发展,人们逐渐意识到对实时数据处…
1 Flink的前世今生(生态很重要) 原文:https://blog.csdn.net/shenshouniu/article/details/84439459 很多人可能都是在 2015 年才听到 Flink 这个词,其实早在 2008 年,Flink 的前身已经是柏林理工大学一个研究性项目, 在 2014 被 Apache 孵化器所接受,然后迅速地成为了 ASF(Apache Software Foundation)的顶级项目之一. Apache Flink is an open sour…
参考文章:https://ci.apache.org/projects/flink/flink-docs-release-1.3/setup/jobmanager_high_availability.html#bootstrap-zookeeper Flink典型的任务处理过程如下所示: 很容易发现,JobManager存在单点故障(SPOF:Single Point Of Failure),因此对Flink做HA,主要是对JobManager做HA,根据Flink集群的部署模式不同,分为Sta…
JobManager作为actor, case SubmitJob(jobGraph, listeningBehaviour) => val client = sender() val jobInfo = new JobInfo(client, listeningBehaviour, System.currentTimeMillis(), jobGraph.getSessionTimeout) submitJob(jobGraph, jobInfo)   submitJob,做3件事. 根据Jo…
目录 System Architecture Data Transfer in Flink Event Time Processing State Management Checkpoints, Savepoints, and State Recovery System Architecture 分布式系统需要解决:分配和管理在集群的计算资源.处理配合.持久和可访问的数据存储.失败恢复.Fink专注分布式流处理. Components of a Flink Setup JobManager :接…
JobManager协调每个flink应用的部署,它负责执行定时任务和资源管理. 每一个Flink集群都有一个jobManager, 如果jobManager出现问题之后,将不能提交新的任务和运行新任务失败,这样会造成单点失败,所以需要构建高可用的JobMangager. 类似zookeeper一样,构建好了高可用的jobManager之后,如果其中一个出现问题之后,其他可用的jobManager将会接管任务,变为leader.不会造成flink的任务执行失败.可以在单机版和集群版构建jobMa…
目录 一.运行架构 1.架构 2.组件 二.核心概念 TaskManager . Slots Parallelism(并行度) Task .Subtask Operator Chains(任务链) ExecutionGraph(执行图)任务生成过程 提交流程 一.运行架构 1.架构 基于yarn模式 0) Flink任务提交后,Client向HDFS上传Flink的Jar包和配置 1) 向Yarn ResourceManager提交任务, 2) ResourceManager分配Containe…
影响版本 1.11.0 1.11.1 1.11.2 poc http://192.168.49.2:8081/jobmanager/logs/..%252f..%252f..%252f..%252f..%252f..%252f..%252f..%252f..%252f..%252f..%252f..%252fetc%252fpasswd…
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理. Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为…
 2016-04-30 22:24:39    Yanjun Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为他们它们所提供的SLA是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理,所以在实现的时候通常是分别给出两套实现方法,或者通过一个独…
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理. Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为…
JobManager 处理 SubmitJob https://t.zsxq.com/3JQJMzZ 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门 3.Flink 从0到1学习 -- Flink 配置文件详解 4.Flink 从0到1学习 -- Data Source 介绍 5.Flink 从0到1学习 -- 如何自定义 Data Source ? 6.Flink…
TaskManager 处理 SubmitJob 的过程 https://t.zsxq.com/eu7mQZj 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门 3.Flink 从0到1学习 -- Flink 配置文件详解 4.Flink 从0到1学习 -- Data Source 介绍 5.Flink 从0到1学习 -- 如何自定义 Data Source ? 6.F…
TaskManager 有什么作用 https://t.zsxq.com/RZbu7yN 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门 3.Flink 从0到1学习 -- Flink 配置文件详解 4.Flink 从0到1学习 -- Data Source 介绍 5.Flink 从0到1学习 -- 如何自定义 Data Source ? 6.Flink 从0到1学习…
Flink系列博客,基于Flink1.6,打算分为三部分:原理.源码.实例以及API使用分析,后期等系列博客完成后再弄一个目录. 该系列博客是我自己学习过程中的一些理解,若有不正确.不准确的地方欢迎大伙留言分享.文中引用均已标注,若有侵权,请联系我,立马删除! 1.前言 在讲Flink基本结构之前,我们的先知道Flink是什么?中文官网上的解释是:Apache Flink 是一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算[1].关于无边界和有边界数据流的定义可以参考官网上…
1.Flink中exactly once实现原理分析 生产者从kafka拉取数据以及消费者往kafka写数据都需要保证exactly once.目前flink中支持exactly once的source不多,有kafka source:能实现exactly once的sink也不多,如kafka sink.streamingFileSink,其都要开启checkpoint才能实现exactly once.接下来以FlinkKafkaProducer为例,深入研究其源代码,从而理解flink中的e…
转自: https://www.jianshu.com/p/5b670d524fa5 答案写在最前面:Job的最大并行度除以每个TaskManager分配的任务槽数. 问题 在Flink 1.5 Release Notes中,有这样一段话,直接上截图.   这说明从1.5版本开始,Flink on YARN时的容器数量——亦即TaskManager数量——将由程序的并行度自动推算,也就是说flink run脚本的-yn/--yarncontainer参数不起作用了.那么自动推算的规则是什么呢?要…
on yarn https://ci.apache.org/projects/flink/flink-docs-release-1.8/ops/deployment/yarn_setup.html flink on yarn两种方式 第一种方式:在yarn上启动一个长期运行的flink集群 可以把yarn和hdfs相关配置文件拷贝到flink配置目录下,或者直接指定yarn和hdfs配置文件对应的路径 export HADOOP_CONF_DIR=/root/flink-1.8.2/confcd…
关注公众号:大数据技术派,回复"资料",领取1024G资料. 这一课时我们将讲解 Flink "精确一次"的语义实现原理,同时这也是面试的必考点. Flink 的"精确一次"处理语义是,Flink 提供了一个强大的语义保证,也就是说在任何情况下都能保证数据对应用产生的效果只有一次,不会多也不会少. 那么 Flink 是如何实现"端到端的精确一次处理"语义的呢? 背景 通常情况下,流式计算系统都会为用户提供指定数据处理的可靠模式…
https://www.ibm.com/developerworks/cn/opensource/os-cn-apache-flink/index.html 大数据计算引擎的发展 这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop.Storm,以及后来的 Spark,他们都有着各自专注的应用场景.Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计算的飞速发展.Spark 的火热或多或少的掩盖了其他分布式计算的系统身影.就像 Flink,也就在这个时候默默的发…
1. Flink.Storm.Sparkstreaming对比 Storm只支持流处理任务,数据是一条一条的源源不断地处理,而MapReduce.spark只支持批处理任务,spark-streaming本质上是一个批处理,采用micro-batch的方式,将数据流切分成细粒度的batch进行处理.Flink同时支持流处理和批处理,一条数据被处理完以后,序列化到缓存后,以固定的缓存块为单位进行网络数据传输,缓存块设为0为流处理,缓存块设为较大值为批处理. storm------ --------…
li,ol.inline>li{display:inline-block;padding-right:5px;padding-left:5px}dl{margin-bottom:20px}dt,dd{line-height:20px}dt{font-weight:700}dd{margin-left:10px}.dl-horizontal{*zoom:1}.dl-horizontal:before,.dl-horizontal:after{display:table;line-height:0;…
大数据计算引擎的发展 这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop.Storm,以及后来的 Spark,他们都有着各自专注的应用场景.Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计算的飞速发展.Spark 的火热或多或少的掩盖了其他分布式计算的系统身影.就像 Flink,也就在这个时候默默的发展着. 在国外一些社区,有很多人将大数据的计算引擎分成了 4 代,当然,也有很多人不会认同.我们先姑且这么认为和讨论. 首先第一代的计算引擎,无疑就是 Had…
http://ifeve.com/flink-quick-start/ http://vinoyang.com/2016/05/02/flink-concepts/ http://wuchong.me/blog/2016/05/09/flink-internals-understanding-execution-resources/ 并行数据流 程序在Flink内部的执行具有并行.分布式的特性.stream被分割成stream partition,operator被分割成operator sub…
http://ifeve.com/flink-quick-start/ http://vinoyang.com/2016/05/02/flink-concepts/ http://wuchong.me/blog/2016/05/09/flink-internals-understanding-execution-resources/ 要了解一个系统,一般都是从架构开始.我们关心的问题是:系统部署成功后各个节点都启动了哪些服务,各个服务之间又是怎么交互和协调的.下方是 Flink 集群启动后架构图…
新一代大数据处理引擎 Apache Flink https://www.ibm.com/developerworks/cn/opensource/os-cn-apache-flink/ 新一代大数据处理引擎 Apache Flink 沈 钊伟2015 年 12 月 28 日发布       大数据计算引擎的发展 这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop.Storm,以及后来的 Spark,他们都有着各自专注的应用场景.Spark 掀开了内存计算的先河,也以内存…
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理. Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为…
目录 Client提交任务 flink的图结构 StreamGraph OptimizedPlan JobGraph ExecutionGraph flink部署与执行模型 Single Job JobManager ResourceManager TaskManager YARN Dispatcher JobMaster 源码分析 flink源码阅读经验总结 Client提交任务 执行模式有:本地.远程Standalone等,下面只介绍yarn模式. Yarn模式: Job模式是每个flink…