Deepnude算法“tuo”衣服】的更多相关文章

PS:我不是偷窥狂.我是技术的爱好者 换脸视频后AI又出偏门应用:用算法“tuo”女性衣服 据美国科技媒体Motherboard报道,一名程序员最近开发出一款名叫DeepNude的应用,只要给DeepNude一张女性照片,借助神经网络技术,软件可以自动“脱掉”女性身上的衣服,显示出LUO体照片. 目前DeepNude只能处理女性照片,如果原图LUO露的皮肤越多,处理效果越好:而上传男性照片,最后得出的结果还是女性部位. DeepNude官网已上线,照片可在官网处理,可下载的Windows和Lin…
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基本驾驶技能: 1) 去除(爱情)动作片中的马赛克 2) 给(爱情)动作片中的女孩穿(tuo)衣服 生成式模型 上一篇<用GAN生成二维样本的小例子>中已经简单介绍了GAN,这篇再简要回顾一下生成式模型,算是补全一个来龙去脉. 生成模型就是能够产生指定分布数据的模型,常见的生成式模型一般都会有一个用…
图像的阈值化就是利用图像像素点分布规律,设定阈值进行像素点分割,进而得到图像的二值图像.图像阈值化操作有多种方法,常用方法有经典的OTSU.固定阈值.自适应阈值.双阈值及半阈值化操作.这里对各种阈值化操作进行一个总结. OTSU阈值化 在阈值化处理中,常用的算法就是OTSU.发明人是Nobuyuki Ostu.这种二值化操作阈值的选取非常重要,阈值选取的不合适,可能得到的结果就毫无用处.简单的说,这种算法假设衣服图像由前景色和背景色组成.通过统计学的方法来选取一个阈值,使这个阈值可以将前景色和背…
前言:这是一个老故事, 但每次看总是能从中想到点什么.在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售.但是这个奇怪的举措却使尿布和啤酒的销量双双增加了.这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道.原来,美国的妇女们经常会嘱咐她们的丈夫下班以后要为孩子买尿布.而丈夫在买完尿布之后又要顺手买回自己爱喝的啤酒,因此啤酒和尿布在一起购买的机会还是很多的. 是什么让沃尔玛发现了尿布和啤酒之间的关系呢?正是商家通过对超市一年多原始交易数字进行详细的分析,才发…
catalogue . TF-IDF . 基于空间向量的余弦算法 . 最长公共子序列 . 最小编辑距离算法 . similar_text . local sensitive hash 局部非敏感哈希 . SSDEEP Hash . K-means聚类算法 . 二分K-means算法 1. TF-IDF Relevant Link: http://qianxunniao.iteye.com/blog/1831780 2. 基于空间向量的余弦算法 将分词后的词频作为向量分量,将每个文件转化为一个向量…
K-MEANS算法 摘要:在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. 在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. 问题 K-Means算法主要解决的问题如下图所示.我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出…
HDU 2544最短路 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗? Input 输入包括多组数据.每组数据第一行是两个整数N.M(N<=100,M<…
时空上下文视觉跟踪(STC)算法的解读与代码复现 zouxy09@qq.com http://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文.这篇论文是Kaihua Zhang等人今年投稿到一个会议的文章,因为会议还没有出结果,所以作者还没有发布他的Matlab源代码.但为了让我们先睹为快,作者把论文放在arxiv这个网站上面供大家下载了.对于里面所描述的神奇的效果,大家都跃跃欲试,也有人将其复现了.我这里也花了一天的时间去复现了单尺度的C++版本,主要是基于Op…
   随着deep learning的火爆,神经网络(NN)被大家广泛研究使用.但是大部分RD对BP在NN中本质不甚清楚,对于为什这么使用以及国外大牛们是什么原因会想到用dropout/sigmoid/ReLU/change learnRate/momentum/ASGD/vanishment等问题等呢.要想了解国外大牛的思考过程,需要学习到BP在NN中的本质问题,其中涉及到NN训练对于判决边界如何形成?ASGD为什么尤其在NN中效果比二阶信息效果好?如何选择激活函数合适?为何语音识别中误差函数…
以杭电2544题目为例 最短路 Problem Description 在每年的校赛里,全部进入决赛的同学都会获得一件非常美丽的t-shirt. 可是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的.所以如今他们想要寻找最短的从商店到赛场的路线.你能够帮助他们吗?   Input 输入包含多组数据. 每组数据第一行是两个整数N.M(N<=100.M<=10000).N表示成都的大街上有几个路口,标号为1的路口是商店所在地.标号为N的路口是赛场所在地,M则表示在成都有几条路.…