Mysql的B+ Tree索引】的更多相关文章

1.什么是索引? 索引:加速查询的数据结构. 2.索引常见数据结构 顺序查找: 最基本的查询算法-复杂度O(n),大数据量此算法效率糟糕. 二叉树查找:(binary tree search): O(log2n) ,二叉查找树根节点固定,非平衡.树高度深,高度决定io次数,io耗时大. hash索引 无法满足范围查找. 二叉树.红黑树 :导致树高度非常高(平衡二叉树一个节点只能有左子树和右子树),逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,IO次数多查找慢,效率低.todo 逻辑上相…
为什么要使用索引? 最简单的方式实现数据查询:全表扫描,即将整张表的数据全部或者分批次加载进内存,由于存储的最小单位是块或者页,它们是由多行数据组成,然后逐块逐块或者逐页逐页地查找,这样查找的速度非常慢.优点:在数据量小比如只有几十行数据的情况下很快.但数据量大时不适用.更通常情况下,我们应该避免全表扫描,我们可以通过索引来大幅提升查询数据的速度. 什么信息能够成为索引? 能把记录限制在一定查找范围内的字段,比如键,唯一键,主键等 B+ Tree更适合用来做索引原因: 1.B+ 树的磁盘读写代价…
前一段被问到一个平时没有关注到有关于MYSQL索引相关的问题点,被问到一个表有3000万记录,假如有一列占8位字节的字段,根据这一列建索引的话索引树的高度是多少? 这一问当时就被问蒙了,平时这也只关注MySQL索引一般都是都是用B+Tree来存储维护索引的,还有一些复合索引的最左匹配原则等等,还真没有实际关注过始即然用到索引能提升 查询的效率,那么这个索引树高是多少,给定表和索引字段后怎么计算出索引树的高度?下面将用举例的形式来说明如何计算索引树的高度. 在举例之前,先给出一个千万级记录表的索引…
Mysql B-Tree和B+树索引 Mysql加快数据查找使用B-Tree数据结构存储索引数据,InnoDB存储引擎实际使用B+Tree.下面首先介绍下B-Tree和B+Tree的区别: 一.B树和B+树索引(手绘图简要说明) 1.B-Tree索引: 2.B+Tree索引: 3.B-Tree 和B+Tree索引查找原理: 非叶子节点存储索引关键字,叶子节点指针指向的是被索引的数据.节点槽中存放了指向子节点的指针(可以理解为两个关键字之间),存储引擎根据这些指针向下层查找.通过比较节点页的值和要…
MySQL的MyISAM.InnoDB引擎默认均使用B+树索引(查询时都显示为"BTREE"),本文讨论两个问题: 为什么MySQL等主流数据库选择B+树的索引结构? 如何基于索引结构,理解常见的MySQL索引优化思路? 为什么索引无法全部装入内存 索引结构的选择基于这样一个性质:大数据量时,索引无法全部装入内存. 为什么索引无法全部装入内存?假设使用树结构组织索引,简单估算一下: 假设单个索引节点12B,1000w个数据行,unique索引,则叶子节点共占约100MB,整棵树最多20…
[摘要] 最近在看Mysql的存储引擎中索引的优化,神马是索引,支持啥索引.全是浮云,目前Mysql的MyISAM和InnoDB都支持B-Tree索引,InnoDB还支持B+Tree索引,Memory还支持Hash.今天从最基础的学起,学习了解BTree,B-Tree和B+Tree. [主题] B-Tree 介绍 B-Tree 特性搜索插入等 B+Tree 介绍 B*Tree 介绍 [内容] 1. B-Tree 介绍 1970年,R.Bayer和E.mccreight提出了一种适用于外查找的树,…
正确的创建合适的索引,是提升数据库查询性能的基础. 第一章 mysql之索引 索引的定义:索引是为了加速对表中数据行的检索而创建的一种分散存储的数据结构. 我们为什么要使用索引: a.极大的减少存储引擎需要扫描的数据量. b.帮助我们将随机IO变为顺序IO. c.帮助我们在进行分组,排序等的操作时避免使用临时表. 使用索引时我们需要注意什么: a.需要考虑列的离散性,列的离散性越高,选择性就越好. b.考虑最左匹配原则,对索引中关键字的匹配一定是从左往右依次匹配,且不可跳过. c.创建联合索引的…
高性能索引 1.索引基础:索引的作用类似'目录'帮助Query来快速定位数据行. 1.1索引类型: 1.1.1 b-tree索引 b-tree(balance tree)索引:使用平衡树(非平衡二叉树)来保存索引值,叶子结点的到根节点的距离相差不超过1:对于不同的引擎,不同的索引类型叶子结点保存的值可以不同,同过索引找到数据行的方式也不同 可以使用b-tree索引的查询类型:1.全值索引:2.最左前缀:3.前缀索引:4.匹配范围:5.精准匹配某一列,范围匹配另一列(可以在看作最左前缀的扩大化)6…
概述 mysql分区表概述:google搜索一下: RANGE COLUMNS partitioning 主要测试mysql分区表的性能: load 500w 条记录:大约在10min左右: batch insert 1.9w条记录(没建立索引):存在500w条记录的情况下批量插入,速度很快,基本1s左右: batch insert 1.9w条记录(建立1个索引):存在500w条记录的情况下批量插入,速度变慢,基本3s左右(建立的索引越多,速度会越慢): 查询:通过where对分区进行过滤,使用…
高性能MySQL中的三星索引 我对此提出了深深的疑问: 一星:相关的记录指的是什么??(相关这个词很深奥,“相关部门”是什么部门) 二星:如果建立了B-Tree(B+Tree)索引,数据就有序了.三星:索引的列包含了查询需要所有的列?根本不需要在where查询条件所有的列上建立索引! 我认为一星和二星的rows应该是columns,索引不关具体的数据行,只与查询的列有关.这样也与High Performance MySQL 后面提到的多列索引的观点相符合,特别是二星评估. 个人的观点: 评估一个…