如今,深度学习是国际上非常活跃.非常多产的研究领域,它被广泛应用于计算机视觉.图像分析.语音识别和自然语言处理等诸多领域.在多个领域上,深度神经网络已大幅超越了已有算法的性能. 本书是深度学习领域的一本力作.它对深度神经网络尤其是卷积神经网络进行介绍,且注重深度学习的实际应用.而且,本书还对深度学习研发现状进行总结和阐述,包括对Google和Facebook的研究与总结. 本书通过示例的方式详解深度学习的具体应用,包括手写数字识别,物体识别,及以人为中心的计算(包括人脸识别.人脸表情识别.年龄估…
读国内关于深度学习的书籍,可以看看<深度学习原理与应用实践>,对深度学习原理的介绍比较简略(第3.4章共18页).只介绍了"神经网络"和"卷积神经网络",其他类型的深度神经网络(如自动编码器.循环神经网络)没有涉及. 深度学习开源工具Caffe框架和源代码解析的内容比较详细(第5章共60页),重点是卷积神经网络的实践部分.用八章介绍八个图像识别方面的应用场景,如手写数字识别.人脸识别.表情识别.年龄识别等. 最后部分对"深度学习的缺陷"…
1. 深度学习简介 2. TensorFlow系统介绍 3. Hello TensorFlow 4. CNN看懂世界 5. RNN能说会道 6. CNN LSTM看图说话 7. 损失函数与优化算法 TensorFlow的出现和成熟,改变了深度学习的入门和深造路径.今天我们完全可以从具体需求出发,以实践主导,比较容易地入门这一前沿人工智能技术.但是要超越写写例子.做做Demo的层次,创造性地解决新问题,必须在理论上达到一定的理解高度.本书就是沿着这样一个思路展开的,本书作者开辟了一条由实践主导.兼…
<深入浅出深度学习原理剖析与Python实践>介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用:第二部分详细讲解了与深度学习相关的基础知识,包括线性代数.概率论.概率图模型.机器学习和最优化算法:在第三部分中,针对若干核心的深度学习模型,如自编码器.受限玻尔兹曼机.递归神经网络和卷积神经网络等进行详细的原理分析与讲解,并针对不同的模型给出相应的具体应用. <深入浅出深度学习:原理剖析与Python实践>适合有一定高等数…
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST. …
最近一直在研究机器学习,看过两本机器学习的书,然后又看到深度学习,对深度学习产生了浓厚的兴趣,希望短时间内可以做到深度学习的入门和实践,因此写一个深度学习系列吧,通过实践来掌握<深度学习>和 TensorFlow,希望做成一个系列出来,加油! 学习内容包括了: 1. 小象学院的<深度学习>课程 2. TensorFlow的官方教程 3. 互联网上跟深度学习相关的教程 整个深度学习,学习的过程是通过一条主线串联起来的,这个知识结构总结的还是蛮好的. 1. 线性回归 - 线性回归是基础…
深度学习---1cycle策略:实践中的学习率设定应该是先增再降 本文转载自机器之心Pro,以作为该段时间的学习记录 深度模型中的学习率及其相关参数是最重要也是最难控制的超参数,本文将介绍 Leslie Smith 在设置超参数(学习率.动量和权重衰减率)问题上第一阶段的研究成果.具体而言,Leslie Smith 提出的 1cycle 策略可以令复杂模型的训练迅速完成.它表示在 cifar10 上训练 resnet-56 时,通过使用 1cycle,能够在更少的迭代次数下,得到和原论文相比相同…
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleNet:多维度识别 4. ResNet:机器超越人类识别 5. DeepFace:结构化图片的特殊处理 6. U-Net:图片生成网络 7. 实例:剖析VGG,用模型进行模型参数可视化,特征提取,目标预测 期待目标: 1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算 2…
( 转载至: http://www.36dsj.com/archives/98977)  随着人工神经网络算法的成熟.GPU计算能力的提升,深度学习在众多领域都取得了重大突破.本文介绍了微博引入深度学习和搭建深度学习平台的经验,特别是机器学习工作流.控制中心.深度学习模型训练集群.模型在线预测服务等核心部分的设计.架构经验.微博深度学习平台极大地提升了深度学习开发效率和业务迭代速度,提高了深度学习模型效果和业务效果. 人工智能和深度学习 人工智能为机器赋予人的智能.随着计算机计算能力越来越强,在…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…