1. Look Forward, Reason Back Extrapolate, interpret, then tie vision to concrete actions2. Make Big bets, Without Betting the Company Bold and ambitious to change the game, but not reckless3. Build Platforms & Ecosystems, Not Just Products No firm is…
这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域分类,误差很大,但是转成编码之后就准多了. 可以用PCA可视化最后一层的特征,深度学习领域更高阶的做法是用t-SNE(Van der Maaten and Hinton, "Visualizting Data using t-SNE", JMLR 2008). 可视化非线性函数的激活值也可…
1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1)CUDA,只能在英伟达:2)OpenCL类似CUDA,好处是可以跑在任何平台上,但相对慢一些.深度学习可以直接调用现成的库,不用自己写CUDA代码. 用cuDNN比不用快几倍. 深度学习的瓶颈可能不在GPU的运算,而在GPU和数据的通信上,解决办法是:1)把数据读入RAM:2)用SSD而不是HDD:…