Learning C Struct】的更多相关文章

为什么需要结构体类型? 一种语言本身往往会提供一些最基本的数据类型,比如数字型(int,bigint,float,double等),字符型,日期型,布尔型等.但现实世界中,我们面对的对象总是非常复常,不仅仅是一个数字或一个字符串就能够表达的,所以在现代的语言中,如java,C#等OO的语言,有一个class对象,来封装这些. 举一个简单的场景,如果我们有一个函数,处理的对象是学生对象,则每一次调用都需要把学生的信息全部都传入这个方法,这样非常麻烦,我们就希望有一个对象把它包装起来,每一次只传这个…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep learning:五十一(CNN的反向求导及练习) Deep Learning 学习随记(八)CNN(Convolutional neural network)理解 ufldl学习笔记与编程作业:Convolutional Neural Network(卷积神经网络) [UFLDL]Exercise: Co…
今天继续分享我的阅读<LEARNING HARD C#学习笔记>知识点总结与摘要二,仍然是基础知识,但可温故而知新. 七.面向对象 三大基本特性: 封装:把客观事物封装成类,并隐藏类的内部实现细节,仅开放相关的访问属性.方法等 继承:通过继承可以复用父类的代码: 多态:1.允许将子对象赋值给父对象,2.同方法在不同的对象上有不同的实现方式: 子类初始化顺序:初始化类的实例字段à调用父类构造函数à调用子类构造函数: 重写:父类声明为virtual或abstract的类成员(属性.方法),在子类继…
前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 实验内容:Exercise:Convolution and Pooling.从2000张64*64的RGB图片(它是the STL10 Dataset的一个子集)中提取特征作为训练数据集,训练softmax分类器,然后从3200张64*64的RGB图片(它是th…
前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特征,这些特征会被用于下一节的练习 理论知识:线性解码器和http://www.cnblogs.com/tornadomeet/archive/2013/04/08/3007435.html 实验基础说明: 1.为什么要用线性解码器,而不用前面用过的栈式自编码器等?即:线性解码器的作用? 这一点,Ng…
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercise: Implement deep networks for digit classification.利用深度网络完成MNIST手写数字数据库中手写数字的识别.即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作为训练数据集,然后把它输入到栈式自编码器中,它的第一层自编码器…
前言 理论知识:自我学习 练习环境:win7, matlab2015b,16G内存,2T硬盘 练习内容及步骤:Exercise:Self-Taught Learning.具体如下: 一是用29404个无标注数据unlabeledData(手写数字数据库MNIST Dataset中数字为5-9的数据)来训练稀疏自动编码器,得到其权重参数opttheta.这一步的目的是提取这些数据的特征,虽然我们不知道它提取的究竟是哪些特征(当然,可以通过可视化结果看出来,可假设其提取的特征为Features),但…
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught learning)与无监督特征学习(unsupervised feature learning)就是这种算法.虽然同等条件下有标注数据蕴含的信息多于无标注数据,但是若能获取大量的无标注数据并且计算机能够加以利用,计算机往往可以取得比较良好的结果. 通过自学习与无监督特征学习,可以得到大量的无标注数…
接着看讲义,接下来这章应该是Self-Taught Learning and Unsupervised Feature Learning. 含义: 从字面上不难理解其意思.这里的self-taught learning指的是用非监督的方法提取特征,然后用监督方法进行分类.比如用稀疏自编码+softmax regression. 对于非监督特征学习,有两种类型,一类是self-taught learning,一类是semi-supervised learning.看他们的定义不如看讲义中给出的那个…