题目链接 \(Description\) \(Solution\) 首先处理\(a_i\)的前缀异或和\(s_i\).那么在对于序列\(a_1,...,a_n\),在\(i\)位置处分开的价值为:\(s_i+s_i\ ^{\wedge}s_n\). 虽然有个加,但依旧可以考虑按位计算.如果\(s_n\)的第\(k\)位为\(1\),那\(s_i\)的第\(k\)位为\(0\)或是\(1\)贡献都是\(2^k\)(贡献即\(s_i+s_i\ ^{\wedge}s_n\)在第\(k\)位上是否为\(…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5092 套路地弄一个前缀异或和,就变成 f[ i ]=max_{j=0}^{i} { s[ j ] + (s[ i ]^s[ j ]) }.再套路地考虑按位贪心. 然后看了题解.按位贪心不是确定 f[ i ] 的这一位是0还是1,而是确定这一位是否给答案贡献 bin[ j ] ! 按位考虑,自己这一位如果是1,则 j 不管取在哪,都只有一种情况,就是向答案贡献 bin[ j ]: 自己这一位…
5092: [Lydsy1711月赛]分割序列 Time Limit: 5 Sec  Memory Limit: 256 MBSubmit: 219  Solved: 100[Submit][Status][Discuss] Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b _2 xor...xor b_i)+(b_{i+1} xor b_{i+2} xor...xor b…
[Lydsy1711月赛]分割序列 Time Limit: 5 Sec  Memory Limit: 256 MBSubmit: 213  Solved: 97[Submit][Status][Discuss] Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b _2 xor...xor b_i)+(b_{i+1} xor b_{i+2} xor...xor b_n))其中x…
Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b _2 xor...xor b_i)+(b_{i+1} xor b_{i+2} xor...xor b_n))其中xor表示按位异或(XOR),给定一个长度为n的非 负整数序列a_1,a_2,...,a_n,请计算a的每个前缀的能量值. Input 第一行包含一个正整数n(n<=300000),表示序列a的长度. 第二行包含n…
Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b_2 xor...xor b_i)+(b_{i+1} xor b_{i+2} xor...xor b_n))其中xor表示按位异或(XOR),给定一个长度为n的非负整数序列a_1,a_2,...,a_n,请计算a的每个前缀的能量值. Input 第一行包含一个正整数n(n<=300000),表示序列a的长度. 第二行包含n个非…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5092 首先,处理出异或前缀和 s[i],i 位置的答案就是 s[j] + s[j]^s[i],j <= i 异或的套路是按位考虑,但是这里有加法...怎么考虑进位? 所以就不能考虑答案的这一位是什么,而应该考虑在这一位上的贡献,那么即使进位了,还是各位算各位的贡献,互相独立: 然后发现,如果 s[i] 在第 k 位上是1,那么 s[j] 的第 k 位无论是0还是1,总体的贡献都是 1<&…
[Lydsy1711月赛]硬盘检测 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 273  Solved: 75[Submit][Status][Discuss] Description 很久很久以前,小Q买了一个大小为n单元的硬盘,并往里随机写入了n个32位无符号整数.因为时间过去太久,硬 盘上的容量字眼早已模糊不清,小Q也早已忘记了硬盘的容量.小Q记得,n可以被表示成10^k(1<=k<=7)的形式,即 十到一千万.他还记得自己曾经m次随机读…
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][Discuss] Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出.   Input 第一行包含两个正整数n,…
博主曾更过一篇复杂度为$O( k· \log k)$的多项式做法在这里 惊闻本题有$ O(k)$的神仙做法,说起神仙我就想起了于是就去学习了一波 幂与第二类斯特林数 推导看这里 $$ x^k=\sum_{j=0}^kj!\binom{x}{j}\begin{Bmatrix}k\\j\end{Bmatrix}$$ $$ \begin{Bmatrix}k\\j\end{Bmatrix}=\frac{1}{j!}\sum_{i=0}^ji^k\binom{j}{i}(-1)^{j-i}$$ 以上是两个…