MNIST数字识别问题】的更多相关文章

摘自<Tensorflow:实战Google深度学习框架> import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # MNIST 数据集相关的常数 INPUT_NODE = 784 # 输入层的节点数.对于 MNIST 数据集,就等于图片的像素 OUTPUT_NODE = 10 # 输出层的节点数.这个等于类别的数目.因为在 MNIST 的数据集中需要区分的是 0~9 这 10 个数…
一.MNSIT数据处理 MNSIT是一个非常有名的手写体数字识别数据集.包含60000张训练图片,10000张测试图片.每张图片是28X28的数字. TonserFlow提供了一个类来处理 MNSIT数据.这个类会自动下载并转化数据结构. import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist_data = input_data.read_data_sets("mnist_s…
  import sys,os sys.path.append(os.pardir) import numpy as np from tensorflow.examples.tutorials.mnist import input_data from PIL import Image import tensorflow as tf def predict(): meta_path = 'ckpt/mnist.ckpt.meta' model_path = 'ckpt/mnist.ckpt' se…
1.滑动平均模型: 用途:用于控制变量的更新幅度,使得模型在训练初期参数更新较快,在接近最优值处参数更新较慢,幅度较小 方式:主要通过不断更新衰减率来控制变量的更新幅度. 衰减率计算公式 : decay = min{init_decay , (1 + num_update) / (10 + num_update)} 其中 init_decay 为设置的初始衰减率 ,num_update 为模型参数更新次数,由此可见,随着 num_update 更新次数的增加,(1 + num_update) /…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.9…
目录 1. 准备数据集 1.1 MNIST数据集获取: 1.2 程序部分 2. 设计网络结构 2.1 网络设计 2.2 程序部分 3. 迭代训练 4. 测试集预测部分 5. 全部代码 1. 准备数据集 1.1 MNIST数据集获取: torchvision.datasets接口直接下载,该接口可以直接构建数据集,推荐 其他途径下载后,编写程序进行读取,然后由Datasets构建自己的数据集 ​ ​ 本文使用第一种方法获取数据集,并使用Dataloader进行按批装载.如果使用程序下载失败,请将其…
SoftMax回归  http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 我们的训练集由  个已标记的样本构成: ,其中输入特征.(我们对符号的约定如下:特征向量  的维度为 ,其中  对应截距项 .) 由于 logistic 回归是针对二分类问题的,因此类标记 .假设函数(hypothesis function) 如下: 我们将训练模型参数 ,使其能够最小化代价函数 : 在 softmax回归中,我们解决的是多分…
转自:https://blog.csdn.net/coder_Gray/article/details/78562382 在Tensorflow上进行mnist数字识别实例时,出现如下错误 NameError: name 'mnist' is not defined 当然mnist数据集不能直接使用,需要通过input_data模块进行初始化,所以要首先引入input_data模块,网上很多解决办法都是重新下载input_data模块,不过lz认为有些麻烦,毕竟这是TF自带模块,所以只需运行下面…
5.1 MNIST数据处理 MNIST是NIST数据集的一个子集,包含60000张图片作为训练数据,10000张作为测试数据,其中每张图片代表0~9中的一个数字,图片大小为28*28(可以用一个28*28矩阵表示) 为了清楚表示,用下图14*14矩阵表示了,其实应该是28*28矩阵 TF提供了一个类来处理MNIST数据: 准备工作:桌面新建MNIST数字识别->cd MNIST数字识别->shift + 右键->在此处新建命令窗口->jupyter notebook->新建g…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…