线性回归:通过拟合线性模型的回归系数W =(w_1,…,w_p)来减少数据中观察到的结果和实际结果之间的残差平方和,并通过线性逼近进行预测. 从数学上讲,它解决了下面这个形式的问题:      LinearRegression()模型在Sklearn.linear_model下,他主要是通过fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型.线性模型的回归系数W会保存在他的coef_方法中. 例如: >>> from sklearn import linear_model…
1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优化技术的具体载体,影响损失函数不同形式的因素主要有: 和谁比:和什么目标比较损失 怎么比:损失比较的具体度量方式和量纲是什么 比之后如何修正参数:如果将损失以一种适当的形式反馈给原线性模型上,以修正线性模式参数 在这篇文章中,笔者会先分别介绍线性回归(linear regression)和线性分类(…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
学习了SVM分类器的简单原理,并调用sklearn库,对40个线性可分点进行训练,并绘制出图形画界面. 一.问题引入 如下图所示,在x,y坐标轴上,我们绘制3个点A(1,1),B(2,0),C(2,3),其中A和B属于一类,C属于一类. 我们希望找到一条直线,将两个类分开来,且保持实线和两条虚线的距离最大,我们就能将两个类最大化分割开来.当然,我们还有很多其他直线的可以将两个点分割开来,但是这样分割效果最好. 当一个新的点进行预测时,根据点在直线的位置,判断所属分类.例如D(4,3)点在实线上方…
skleran-处理流程 获取数据 以用sklearn的内置数据集, 先导入datasets模块. 最经典的iris数据集作为例子. from sklearn import datasets iris = datasets.load_iris() # 导入数据集, json格式 X = iris.data # 获取特征向量 y = iris.target # 获取样本标签 print('特征向量:', X[:3]) print("样本标签:", y[40:60]) 特征向量: [[5.…
认识 sklearn 官网地址: https://scikit-learn.gor/stable/ 从2007年发布以来, scikit-learn已成为重要的Python机器学习库, 简称sklearn, 支持包括分类, 回归, 降维和聚类等机器学习算法, 还包括了特征提取, 数据处理, 模型评估三大模块. sklearn是Scipy的扩展, 建立在Numpy, Matplotlib..等库的基础上. 拥有完善的文档, 上手容易, API丰富, 同时封装了大量的机器学习算法, 且内置了大量数据…
sklearn库中的标准数据集与基本功能 下面我们详细介绍几个有代表性的数据集: 当然同学们也可以用sklearn机器学习函数来挖掘这些数据,看看可不可以捕捉到一些有趣的想象或者是发现: 波士顿房价数据集: 波士顿房价数据集包含506组数据,每条数据包含房屋以及房屋周围的详细信息.其中包含城镇犯罪率.一氧化氮浓度.住宅平均房间数.到中心区域的加权距离以及自住房平均房价等.因此,波士顿房价数据集能够应用到回归问题上. 这里是波士顿房价数据集的部分房价数据信息展示:例如:NOX这个属性代表一氧化氮的…
Python: sklearn库 —— 数据预处理 数据集转换之预处理数据:      将输入的数据转化成机器学习算法可以使用的数据.包含特征提取和标准化.      原因:数据集的标准化(服从均值为0方差为1的标准正态分布(高斯分布))是大多数机器学习算法的常见要求. 如果原始数据不服从高斯分布,在预测时表现可能不好.在实践中,我们经常进行标准化(z-score 特征减去均值/标准差). 一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性…
本节构建一个网络,将路透社新闻划分为46个互斥的主题,也就是46分类 案例2:新闻分类(多分类问题) 1. 加载数据集 from keras.datasets import reuters (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000) 将数据限定在10000个最常见出现的单词,8982个训练样本和2264个测试样本 len(train_data) 8982 len…
1.Category简介 Category,又称为类别&类目&分类,是OC特有语法,在不修改原有类的基础上增加新的方法,一个庞大的类可以多人来分模块开发,有助于团队合作,或者对当前类方法做一个归类,以便于更好的更新和维护 2.Category的用法 命名规则:类名+扩展方法,比如给 Car增加一个run方法,那么命名为 (Car+run) 新建new file中选择Objective-C file  选择Category 在.h文件中,声明类别: @interface 原有类类名 (分类名…