JSOI 2009 BZOJ 1444 有趣的游戏】的更多相关文章

题面 题目描述 小阳阳发明了一个有趣的游戏:有n个玩家,每一个玩家均有一个长度为 l 的字母序列,任何两个玩家的字母序列不同.共有m种不同的字母,所有的字母序列都由这m种字母构成,为了方便,我们取大写字母的前.个字母.例如.m =3 , l = 4 , ABAA , CBCA 为两个合法的字母序列.现在由小阳阳来操控一台神奇的机器,每个时刻机器会随机产生一个字母,其中第i种字母随机出来的概率为pi/qi,显然 sum(pi/qi)=1 .这样T个时刻后机器会产生一个长度为 T 的字母序列.如果某…
真的是很有趣的游戏... 对每个单词构建好AC自动机后,由于单词都是相同长度的且不同,所以不会出现互相为子串的形式. 那么我们对AC自动机上的节点构建转移矩阵.对于每个单词末尾的节点.该节点的出边仅仅与自己相连且概率为1. 表示如果已经出现了该单词游戏就结束了.答案是收敛的,我们对这个矩阵迭代个2^50次应该就可以求出近似的答案了. # include <cstdio> # include <cstring> # include <cstdlib> # include…
BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p_x(i) \] \(p_x(i)\)表示经过第\(x\)个点\(i\)次的概率.我们设表示一个单词的节点为关键节点,则所有关键节点只会经过一次,也就是说\(f_{关键}=p_{关键}(1)\),也就是我们要求的答案. \[ \displaystyle f_x=\sum_{y与x相连}rate_{y…
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以AC自动机上每个点为一个未知数,列出方程高斯消元求解即可,时间复杂度$O(n^{3}m^{3})$. #include<queue> #include<cstdio> #include<algorithm> #define MN 21 #define ld double #d…
1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩阵来矩乘几十次可以认为是无穷个字符,就得到概率了 但我们发现Trie图也是图啊,直接高斯消元就好了,\(f[i]\)表示走到节点i的期望次数 注意\(f[0]\)需要+1 #include <iostream> #include <cstdio> #include <cstrin…
1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1382  Solved: 498[Submit][Status][Discuss] Description Input 注意 是0<=P Output Sample Input Sample Output HINT  30%的数据保证, n ≤ 2. 50%的数据保证, n ≤ 5. 100%的数据保证, n , l, m≤ 10. Source 析:很容易…
1444: [Jsoi2009]有趣的游戏 链接 分析: 如果一个点回到0号点,那么会使0号点的概率增加,而0号点的概率本来是1,不能增加,所以这题用期望做. 设$x_i$表示经过i的期望次数,然后初始可以知道$x_0=0$,又因为末尾节点只会经过一次,所以末尾节点的概率就是期望. 然后建出AC自动机,高斯消元. 参考sengxian 代码: Gauss #include<cstdio> #include<algorithm> #include<cstring> #in…
BZOJ 洛谷 建出AC自动机,每个点向两个儿子连边,可以得到一张有向图.参照 [SDOI2012]走迷宫 可以得到一个\(Tarjan\)+高斯消元的\(O((nm)^3)\)的做法.(理论有\(60\)分啊但是第\(5.6\)个点WA了smg) 其实\(O((nm)^3)\)就是 [JSOI2009]有趣的游戏...只需建出AC自动机一遍高斯消元即可,比上面那个不知道好写到哪里去.. \(40\)分的做法问题在于状态(变量)太多.考虑把类似的状态合并成一个. 假设现在一共有两个串\(TTH\…
[BZOJ1444][JSOI2009]有趣的游戏(高斯消元,AC自动机) 题面 BZOJ 题解 先把\(AC\)自动机构建出来,最好构成\(Trie\)图.然后这样子显然是在一个有向图中有一堆概率的转移,并且存在环,所以高斯消元解决. #include<iostream> #include<cstdio> #include<queue> using namespace std; struct Node{int son[26],fail,lst;}t[500]; int…
1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1007  Solved: 334[Submit][Status][Discuss] Description Input 注意 是0<=P Output Sample Input Sample Output         [题解]   AC自动机+矩阵乘法   首先把模式串建成AC自动机,构建出转移矩阵.   构造方法:a[i][j]表示从第i个结点转移到第…