关于caffe 是如何卷积的一点总结】的更多相关文章

最近,在看caffe源码时,偶然在网上看到一个问题?觉得挺有意思,于是,仔细的查了相关资料,并将总结写在这里,供大家迷惑时,起到一点启示作用吧. 问题的题目是CNN中的一个卷积层输入64个通道的特征子图,输出256个通道的特征子图,那么,该层一共包含多少个卷积核? 对于上面这个问题,目前有两种答案,每一种答案的区别是所基于的卷积核的维度不同而导致的.下面是两种答案的解析过程: 第一种答案:卷积核是二维的(caffe源码中以卷积核二维转化成相应矩阵),那么就需要64*256个卷积核来对输入特征子图…
通俗易懂理解卷积 图示理解神经网络的卷积 input: 3 * 5 * 5 (c * h * w) pading: 1 步长: 2 卷积核: 2 * 3 * 3 * 3 ( n * c * k * k ) output: 2 * 3 * 3 ( c * h * w ) 如下图所示:  深入理解卷积 首先需要理解caffe里面的im2col和col2im 然后 卷积层 其实和 全连接层 差不多了 理解im2col 图示理解im2col input: 3 * 4 * 4 ( c * h * w )…
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mnist" type: "Data" top: "data" top: "label" data_param { source: "examples/mnist/mnist-train-leveldb" backend: L…
caffe在 .\examples\mnist文件夹下有一个 lenet.prototxt文件,这个文件定义了一个广义的LetNet-5模型,对这个模型文件逐段分解一下. name: "LeNet" //网络的名称是LeNet layer { //定义一个网络层 name: "data" //定义该网络层的名称为 data type: "Input" //定义网络层的类型是 输入层 top: "data" //定义网络层的输出…
https://www.zhihu.com/question/28385679 如上,将三维的操作转换到二维上面去做,然后调用GEMM库进行矩阵间的运算得到最后结果. 两个矩阵相乘,需要中间的那个维度相同,这个相同的维度就是C×K×K,其中C是Feature map的维度,K为卷积核的边长. 按照卷积核在Feature map上面滑窗的顺序将其展开成二维的. 在三维上面看,就是卷积核的所有参数与Feature map相应的位置相乘相加,得到一个数,就是该位置的像素的卷积后的输出像素值.…
今天一个同学问 卷积过程好像是对 一个通道的图像进行卷积, 比如10个卷积核,得到10个feature map, 那么输入图像为RGB三个通道呢,输出就为 30个feature map 吗, 答案肯定不是的, 输出的个数依然是 卷积核的个数. 可以查看常用模型,比如lenet 手写体,Alex imagenet 模型, 每一层输出feature map 个数 就是该层卷积核的个数. 1. 一通道单个卷积核卷积过程 2. 一通道 多个卷积核卷积过程 一个卷积核得到的特征提取是不充分的,我们可以添加…
原文链接:https://www.zhihu.com/question/27982282 1.Caffe代码层次.回答里面有人说熟悉Blob,Layer,Net,Solver这样的几大类,我比较赞同.我基本是从这个顺序开始学习的,这四个类复杂性从低到高,贯穿了整个Caffe.把他们分为三个层次介绍. Blob:作为数据传输的媒介,无论是网络权重参数,还是输入数据,都是转化为Blob数据结构来存储 Layer:作为网络的基础单元,神经网络中层与层间的数据节点.前后传递都在该数据结构中被实现,层类种…
如何在 centos 7.3 上安装 caffe 深度学习工具   有好多朋友在安装 caffe 时遇到不少问题.(看文章的朋友希望关心一下我的创业项目趣智思成) 今天测试并整理一下安装过程.我是在阿里云上测试,选择centos 7.3 镜像. 先安装 epel 源 1 yum install epel-release 安装基本编译环境 1 2 yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-dev…
转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Vision_layer里面主要是包括了一些关于一些视觉上的操作,比如卷积.反卷积.池化等等.这里的类跟data layer一样好很多种继承关系.主要包括了这几个类,其中CuDNN分别是CUDA版本,这里先不讨论,在这里先讨论ConvolutionLayer BaseConvolutionLayer ConvolutionLaye DeconvolutionL…
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr.如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学…