首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
莫比乌斯函数之和(51nod 1244)
】的更多相关文章
[51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1Nμ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n==1]d∣n∑μ(d)=[n==1] 移项 μ(d)=[n==1]−∑d∣n,d<nμ(d)∴S(N)=∑i=1Nμ(i)=∑i=1N([i==1]−∑d∣i,d<iμ(d))=1−∑i=1N∑d∣i,d<iμ(d)\mu(d)=[n==1]-\sum_{d|n,d<n}\mu(d)\…
51nod 1244 莫比乌斯函数之和
题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积性函数前缀和的方法,学习参考博客:http://blog.csdn.net/skywalkert/article/details/50500009 要好好看大神的博客哦orz 用筛法预处理前N^(2/3)项,后面的记忆化搜索解决. 不太会用哈希,就用map记忆化一下: #include<cstdi…
51nod 1244 莫比乌斯函数之和 【杜教筛】
51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0.例如:miu(4), miu(12), miu(18) = 0. 如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k.例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10)…
51 NOD 1244 莫比乌斯函数之和(杜教筛)
1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0.例如:miu(4), miu(12), miu(18) = 0. 如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k.例如:miu(2), mi…
51nod1244 莫比乌斯函数之和
推公式.f[n]=1-∑f[n/i](i=2...n).然后递归+记忆化搜索.yyl说这叫杜教筛?时间复杂度貌似是O(n 2/3)的? #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std; #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int…
51nod 1244 莫比乌斯函数之和(杜教筛)
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利用杜教筛: 求F(n)=∑(f(i)) 存在g=f*I,定义G(n)=∑(g(i)) 就可以得到F(n)=G(n)-∑(F(n/i)) 加一些预处理我们可以做到O(n^(2/3))求解F(n) 我们知道积性函数∑(miu(d))=0(d|n),又有∑(miu(d))=1(n=1), 所以∑∑(miu…
莫比乌斯函数之和(51nod 1244)
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0.例如:miu(4), miu(12), miu(18) = 0. 如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k.例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1. 给出一个区间[a,b],S…
【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛
题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 杜教筛裸题,不过现在我也只会筛这俩前缀和... $$s(n)=\sum _{i=1}^{n}f(i)$$ 那么就有: $$\sum_{i=1}^{n}f(i)\lfloor \frac{n}{i} \…
【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 用杜教筛求积性函数\(f(n)\)的前缀和\(S(n)=\sum\limits_{i=1}^nf(i)\),需要构造一个\(g(n)\)使得\(\sum\limits_{d|n}f(d)g(\frac nd)\)和\(\sum\limits_{i=1}^ng(i)\)都可以快速求出.因为我们有公式…
【51nod】1244 莫比乌斯函数之和
题解 求积性函数的前缀和?杜教筛! 这不给一发杜教筛入门必备之博客= = https://blog.csdn.net/skywalkert/article/details/50500009 好了,然后我试着在这里推导一下式子 我们利用一个卷积就是 \(\mu * I = e\) 写成熟悉的形式就是 \([n = 1] = \sum_{d | n} \mu(d)\) 哎?和杜教筛有什么关系啊 $1 = \sum_{i = 1}^{n}[i = 1] = \sum_{i = 1}^{n} \sum_…