Spark-RDD之 zip】的更多相关文章

cache和persist 将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ONLY.因为RDD的transformation是lazy的,只有action算子才会触发transformain真正的执行,如果一个rdd需要进行多次的action算子操作,最好能够使用cache或persist将rdd缓存至内存中,这样除第一次action会触发transformation操作,后…
aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine…
http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell Overview(概述) 在较高的层次上,每个Spark应用程序都包含一个驱动程序,该程序运行用户的主要功能并在集群上执行各种并行操作. Spark提供的主要抽象是弹性分布式数据集(RDD),它是跨群集节点分区的元素集合,可以并行操作. RDD是通过从Hadoop文件系统(或任何其他Hadoop支持的文件系统)中的文件或驱动程序中的现有Sc…
Spark算子总结 算子分类 Transformation(转换) 转换算子 含义 map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 filter(func) 过滤, 返回一个新的RDD, 该RDD由经过func函数计算后返回值为true的输入元素组成 flatMap(func) 类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素) mapPartitions(func) 类似于map,但独立地在R…
在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量调大.还有就是通过设置一个Rdd的分区来达到设置生成的文件的数量. 有两种方法是可以重设Rdd的分区:分别是 coalesce()方法和repartition(). 这两个方法有什么区别,看看源码就知道了: def coalesce(numPartitions: Int, shuffle: Bool…
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理.因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果.本文为第一部分,将介绍Spark RDD中与Map和Reduce相关的API中.   如何创建RDD? RDD可以从普通数组创建出…
aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkContext, SparkConf} /** * Created by Edward on 2016/10/27. */ object AggregateByKey { def main(args: Array[String]) { val sparkConf: SparkConf =…
1.  基于数据集的处理: 从物理存储上加载数据,然后操作数据,然后写入数据到物理设备; 基于数据集的操作不适应的场景: 不适合于大量的迭代: 不适合交互式查询:每次查询都需要对磁盘进行交互. 基于数据流的方式不能够复用曾经的结果或者中间的结果; 2. RDD弹性数据集 特点: A)自动的进行内存和磁盘数据的存储切换: B) 基于lineage的高效容错: C) Task如果失败会自动进行重试 D) Stage如果失败会自动进行重试,而且只会计算失败的分片; E) Checkpoint和pers…
org.apache.spark.rddRDDabstract class RDD[T] extends Serializable with Logging A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. Thi…
以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 *********************************************** map(func) 返回一个新的分布式数据集,由每个原元素经过func函数转换后组成 ***********************************************filter(func)返回一个新的数据集,由经过func函数后返回值为true的原元素组成 ***…