1657: [Usaco2006 Mar]Mooo 奶牛的歌声 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 631 Solved: 445[Submit][Status][Discuss] Description Farmer John's N (1 <= N <= 50,000) cows are standing in a very straight row and mooing. Each cow has a unique height…
Description Farmer John's N (1 <= N <= 50,000) cows are standing in a very straight row and mooing. Each cow has a unique height h in the range 1..2,000,000,000 nanometers (FJ really is a stickler for precision). Each cow moos at some volume v in th…
先考虑只能往一边传播,最后正反两边就行 一向右传播为例,一头牛能听到的嚎叫是他左边的牛中与高度严格小于他并且和他之间没有更高的牛,用单调递减的栈维护即可 #include<iostream> #include<cstdio> using namespace std; const int N=50005; int n,a[N],v[N],p[N],q[N],s[N],top,ans; int read() { int r=0,f=1; char p=getchar(); while(…
1657: [Usaco2006 Mar]Mooo 奶牛的歌声 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 526 Solved: 365[Submit][Status] Description Farmer John's N (1 <= N <= 50,000) cows are standing in a very straight row and mooing. Each cow has a unique height h in the…
1657: [Usaco2006 Mar]Mooo 奶牛的歌声 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 489 Solved: 338[Submit][Status] Description Farmer John's N (1 <= N <= 50,000) cows are standing in a very straight row and mooing. Each cow has a unique height h in the…
1657: [Usaco2006 Mar]Mooo 奶牛的歌声 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 961 Solved: 679[Submit][Status][Discuss] Description Farmer John's N (1 <= N <= 50,000) cows are standing in a very straight row and mooing. Each cow has a unique height…
Description Farmer John's N (1 <= N <= 50,000) cows are standing in a very straight row and mooing. Each cow has a unique height h in the range 1..2,000,000,000 nanometers (FJ really is a stickler for precision). Each cow moos at some volume v in th…
用单调递减的栈从后往前扫一遍即可 #include<iostream> #include<cstdio> using namespace std; const int N=1000005; int n,s[N],top,a[N],ans[N]; int read() { int r=0,f=1; char p=getchar(); while(p>'9'||p<'0') { if(p=='-') f=-1; p=getchar(); } while(p>='0'&…
选取任意一个点为root , size[ x ] 表示以 x 为根的子树的奶牛数 , dp一次计算出size[ ] && 选 root 为集会地点的不方便程度 . 考虑集会地点由 x 点向它的子节点 son 转移 , 那么以 son 为集会地点比以 x 为集会地点要多 dist( x , son ) * ( tot - size[ x ] ) - dist( x , son ) * size[ x ] = dist( x , son ) * ( tot - 2 * size[ x ] )…