题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起.重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的偶像一个个归队到原来的空位,归队的位置任意. 请问最少让多少偶像出列? 解析 有点难. 定义二进制状态\(i\)表示自右往左第\(j\)位二进制数为第\(j\)个团队排队状态,其中1表示排好,0反之. 我们不妨大胆假设对于状态\(i\),这些排好的团队就都站在最前面,那么没排好的团队就只能站在她们后…