matlab numpy equivalents】的更多相关文章

THIS IS AN EVOLVING WIKI DOCUMENT. If you find an error, or can fill in an empty box, please fix it! If there's something you'd like to see added, just add it. General Purpose Equivalents MATLAB numpy Notes help func info(func) or help(func) or func?…
搬运自:http://scipy.github.io/old-wiki/pages/NumPy_for_Matlab_Users.html. 1.Introduction MATLAB和NumPy/SciPy有很多共同之处,但也有很多不同之处.创建NumPy和SciPy是为了用Python以最自然的方式进行数值和科学计算,而不是为了成为MATLAB的克隆.这个页面的目的是收集关于差异的智慧,主要是为了帮助精通MATLAB的用户成为精通NumPy和SciPy的用户.NumPyProConPage是…
ubantu16.04+mxnet +opencv+cuda8.0 环境搭建 建议:环境搭建完成之后,不要更新系统(内核) 转载请注明出处: 微微苏荷 一 我的安装环境 系统:ubuntu16.04 显卡:gt940m python: 2.7.12 GCC:5.3.0 (ubuntu 默认是5.4, 关于降级,后边有叙述) 二 安装步骤 (一) gcc降级 (可选/安装opencv2.4.13则必选) 根据需要,opencv安装时提示,gcc 不支持5.3以上版本,所以降级. 方法1:5.4 =…
市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到什么经验. 我们主要关注编程模式本身,而不是其具体实现.因此,本文并不是一篇关于深度学习库相互比较的文章.相反,我们根据它们所提供的接口,将这些函数库分为几大类,然后讨论各类形式的接口将会对深度学习编程的性能和灵活性产生什么影响.本文的讨论可能不只针对于深度学习,但我们会采用深度学习的例子来分析和优…
构造你自己的第一个神经网络 通过手势的图片识别图片比划的数字:1) 现在用1080张64*64的图片作为训练集2) 用120张图片作为测试集  定义初始化值 def load_dataset(): train_dataset = h5py.File('datasets/train_signs.h5', "r") train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set…
Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Tensorflow. You will implement useful functions and draw the parallel with what you did using Numpy. You will understand what Tensors and operations are,…
MxNet官网: http://mxnet.readthedocs.io/en/latest/ 前言: caffe是很优秀的dl平台.影响了后面很多相关框架. cxxnet借鉴了很多caffe的思想.相比之下,cxxnet在实现上更加干净,例如依赖很少,通过mshadow的模板化使得gpu和cpu代码只用写一份,分布式接口也很干净. mxnet是cxxnet的下一代,目前实现了cxxnet所有功能,但借鉴了minerva/torch7/theano,加入更多新的功能. ndarray编程接口,类…
       原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台让开发者快速实现一个高度定制化的深度神经网络. Minerva在系统设计上使用分层的设计原则,将"算的快"这一对于系统底层的需求和"好用"这一对于系统接口的需求隔离开来,如图3所示.在接口上,我们提供类似numpy的用户接口,力图做到友好并且能充分利用Python和nu…
caffe是很优秀的dl平台.影响了后面很多相关框架.        cxxnet借鉴了很多caffe的思想.相比之下,cxxnet在实现上更加干净,例如依赖很少,通过mshadow的模板化使得gpu和cpu代码只用写一份,分布式接口也很干净. CXXNET:极致的C++深度学习库 cxxnet是一个并行的深度神经网络计算库,它继承了xgboost的简洁和极速的基因,并开始被越来越多人使用.例如Happy Lantern Festival团队借助Cxxnet在近期的Kaggle数据科学竞赛中获得…
数据分析 matlab Numpy + scipy + pandas +matplotlib 数据计算 +科学应用+数据清洗+数据可视化 1 Numpy概述 1 基于c语言的python接口的数值算法库 2 开源免费 3 弥补了python语言在数值计算方面的短板 4 作为常用科学计算工具的底层支撑 2 Numpy的性能 1 简化代码编写,提高开发效率 2 通过优化底层实现,提高运行速度 基础: 1 数组 2 Numpy中的数组是ndarray类实例化的对象: 实例数据:数组的内容 元数据:对数…
机器学习-SVM-手写识别问题 这里我们解决的还是之前用KNN曾经解决过的手写识别问题(https://www.cnblogs.com/jiading/p/11622019.html),但相比于KNN,SVM好的地方在于一旦我们的模型训练完成,我们就可以得到一个确定的决策超平面,当然这个超平面的w是用所有的支持向量来描述的,这就表示我们发布模型的时候只需要包括所有的支持向量在内就可以了,剩下所有的向量都可以舍弃,和每次都需要所有向量的KNN相比,这就大大减小了模型的大小. 注意,这里举的是一个二…
TensorFlow Tutorial Initialize variables Start your own session Train algorithms Implement a Neural Network 1. Exploring the Tensorflow Library To start, you will import the library: import math import numpy as np import h5py import matplotlib.pyplot…
目录 第二课第三周:TensorFlow Introduction Introduction to TensorFlow 1 - Packages 1.1 - Checking TensorFlow Version 2 - Basic Optimization with GradientTape 2.1 - Linear Function Exercise 1 - linear_function 2.2 - Computing the Sigmoid Exercise 2 - sigmoid 2…
利用Numpy,python可以进行有效的科学计算.本文给过去常用matlab,现在正学习Numpy的人. 在进行矩阵运算等操作时,使用array还是matrix?? 简短的回答,更多的时候使用array.使用array的唯一缺点就是你必须使用’dot’函数来代替*来进行矩阵乘法. array matrix 可以超过2维 只能2维 .T(转置) .T(转置).I(求逆)     详见参考文档1 matlab 与Numpy 常用操作对比 Maltab numpy help func info(fu…
转自:http://blog.csdn.net/pipisorry/article/details/45563695 http://blog.csdn.net/pipisorry/article/details/39087583 在介绍工具之前先对理论基础进行必要的回顾是很必要的.没有理论的基础,讲再多的应用都是空中楼阁.本文主要设涉及线性代数和矩阵论的基本内容.先回顾这部分理论基础,然后给出MATLAB,继而给出Python的处理.个人感觉,因为Python是面向对象的,操纵起来会更接近人的正…
http://mathesaurus.sourceforge.net/matlab-numpy.html Help MATLAB/Octave Python Description dochelp -i % browse with Info help() Browse help interactively help help or doc doc help Help on using help help plot help(plot) or ?plot Help for a function h…
数学意义上的矩阵乘法 注意事项: 1.当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘. 2.矩阵C的行数等于矩阵A的行数,C的列数等于B的列数. 3.乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和. 乘积-哈达马积(hadamard product) 乘积-克罗内克乘积 MatLab中的乘法()和点乘(.) a * b 是进行矩阵相乘, a.*b是a矩阵的每一个元素乘以b矩阵对应位置的元素 形成的一个新矩阵. Numpy In [1…
动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题 D3.js入门指南 什么是D3?D3是指数据驱动文档(Data-Driven Documents),根据D3的官方定义: D3.js是一个JavaScript库,它可以通过数据来操作文档.D3可以通过使用HTML.SVG和CSS把数据鲜活形象地展现出来.D3严格遵循Web标准,因而可以让你的程序轻松兼容…
参考 https://zhuanlan.zhihu.com/p/26306568 https://byjiang.com/2017/11/18/SVD/ http://www.bluebit.gr/matrix-calculator/ https://stackoverflow.com/questions/3856072/single-value-decomposition-implementation-c https://stackoverflow.com/questions/35665090…
转自Stackoverflow.备忘用. Question I want to create a MATLAB-like cell array in Numpy. How can I accomplish this? Answer Matlab cell arrays are most similar to Python lists, since they can hold any object - but scipy.io.loadmat imports them as numpy objec…
matlab是标准的,numpy相当于转置后计算 >> x = [2,0,-1.4;2.2,0.2,-1.5;2.4,0.1,-1;1.9,0,-1.2] x = 2.0000    0            -1.4000 2.2000    0.2000    -1.5000 2.4000    0.1000    -1.0000 1.9000    0            -1.2000 >> cov(x) ans = 0.0492        0.0142      0…
a = np.arange(6) a = a.reshape((2, 3)) print np.lib.pad(a, 1, 'symmetric') 运行结果: [[ ] [ ] [ ] [ ]]…
这篇文章主要讲述Python如何安装Numpy.Scipy.Matlotlib.Scikit-learn等库的过程及遇到的问题解决方法.最近安装这个真是一把泪啊,各种不兼容问题和报错,希望文章对你有所帮助吧!你可能遇到的问题包括:        ImportError: No module named sklearn 未安装sklearn包        ImportError: DLL load failed: 找不到指定的模块        ImportError: DLL load fai…
接触 numpy 遇到的第一个函数可能就是 linspace 函数,但是对于我们这种没有学过 matlab 的人来说,根本不知道这是什么. 所以只能自己查资料. 词典显示: 线性等分向量 线性平分矢量 线性平分向量 那么怎么用呢? linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) Return evenly spaced numbers over a specified interval. Return…
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效果,看到球员扣篮的动作就可以了,比如下图: 如果我们直接对篮球照片进行几百万像素的处理,会有几千维甚至几万维的数据要计算,计算量很大.而往往我们只需要大概勾勒出篮球的大概形状就可以描述问题,所以必须对此类数据降维,这样会使处理数据更加轻松.这个在人脸识别中必须要降维,因为我们在做特征提取的时候几万维…
安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器学习模块,包括分类.回归.聚类系列算法,主要算法有SVM.逻辑回归.朴素贝叶斯.Kmeans.DBSCAN等,目前由INRI 资助,偶尔Google也资助一点. SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化.线性代数.积分.插值.特殊函数.快速傅里叶变换.信号处…
numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quickstart.html) 各种用法介绍 首先是numpy中的数据类型,ndarray类型,和标准库中的array.array并不一样. ndarray的一些属性 ndarray.ndim the number of axes (dimensions) of the array. In the Pyth…
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说,用numpy的主要目的在于应用矢量化运算.Numpy并没有多么高级的数据分析功能,理解Numpy和面向数组的计算能有助于理解后面的pandas.按照课本的说法,作者关心的功能主要集中于: 用于数据整理和清理.子集构造和过滤.转换等快速的矢量化运算 常用的数组解法,如排序.唯一化.集合运算等 高效的描…
使用numpy时,跟matlab不同: 1.* dot() multiply() 对于array来说,* 和 dot()运算不同 *是每个元素对应相乘 dot()是矩阵乘法 对于matrix来说,* 和 multiply() 运算不同 * 是矩阵乘法 multiply()  是每个元素对应相乘 A B为array   MA MB为matrix multiply(MA, MB)对应元素相乘 dot(MA, MB)矩阵乘法 注意:对应元素相乘时,矩阵大小必须相同:矩阵相乘时,矩阵大小要满足矩阵相乘要…
今天在阅读数学建模的时候看到了差分那章 其中有一个用matlab求线性的代码,这里我贴出来 这里我送上 Python代码 In [39]: import numpy as np ...: from scipy.optimize import nnls ...: x = np.array([[1,2,3,4,5],[1,1,1,1,1]]) ...: x = x.T ...: y = np.array([11,12,13,15,16]) ...: nnls(x,y) ...: Out[39]: (…