deep learning实践经验总结】的更多相关文章

近期拿caffe来做图片分类.遇到不少问题,同一时候也吸取不少教训和获得不少经验. 先看样例再总结经验. 这是一个2类分类器.分的是条纹衣服和纯色衣服. 先看几张图片. 条纹衣服:   纯色衣服: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="&qu…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在分布式训练时,提高计算通信占比是提高计算加速比的有效手段,当网络通信优化到一定程度时,只有通过增加每个worker上的batch size来提升计算量,进而提高计算通信占比.然而一直以来Deep Learning模型在训练时对Batch Size的选择都是异常敏感的,通常的经验是Large Batch Size会使收敛性变差,而相对小一点的Batch Size才能收敛的更好…
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中,不可能从一开始就准确预测出一些信息和其他超级参数,例如:神经网络分多少层:每层含有多少个隐藏单元:学习速率是多少:各层采用哪些激活函数.应用型机器学习是一个高度迭代的过程. 从一个领域或者应用领域得来的直觉经验,通常无法转移到其他应用领域,最佳决策取决于 所拥有的数据量,计算机配置中输入特征的数量,…
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 examples, how would you split the train/dev/test set? (如果你有 10,000,000 个样本,你会如何划分训练/开发/测试集?) [ ]98% train . 1% dev . 1% test(训练集占 98% , 开发集占 1% , 测试集占 1%) 答案…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
头脑一热,坐几十个小时的硬座北上去天津大学去听了门4天的深度学习课程,课程预先的计划内容见:http://cs.tju.edu.cn/web/courseIntro.html.上课老师为微软研究院的大牛——邓力,群(qq群介绍见:Deep learning高质量交流群)里面有人戏称邓力(拼音简称DL)老师是天生注定能够在DL(Deep learning)领域有所成就的,它的个人主页见:http://research.microsoft.com/en-us/people/deng/.这次我花费这么…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定的规则相互连接在一起形成神经网络,从而奇迹般的获得了强大的学习能力.我们还将介绍这种网络的训练算法:反向传播算法.最后,我们依然用代码实现一个神经网络.如果您能坚持到本文的结尾,将会看到我们用自己实现的神经网络去识别手写数字.现在请做好准备,您即将双手触及到深度学习的大门. 神经元 神经元和感知器本…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…