瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2404    Accepted Submission(s): 1066 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n 行第m 列的格…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1102 As I am fond of making easier problems, I discovered a problem. Actually, the problem and k=. There are solutions. They are . . . . . . . . . . . . . . . As I have already told you that I us…
题目链接 题目叙述很啰嗦,可以简化为:n个球[1-1e5],放到m个不同的桶里,一共多少种不同的放法.[桶里可以不放] ------------------------------------------------------------------------------------------------ 解C(n+m-1, m-1) 由于m,n可能很大,所以需要用逆元.扩展欧几里得. #include <set> #include <map> #include <st…
C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Vitaly is a very weird man. He's got two favorite digits a and b. Vitaly calls a positive integer good, if the decimal…
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(ll l,ll r,ll &x,ll &y) { if(r==0){x=1;y=0;return l;} else { ll d=exgcd(r,l%r,y,x); y-=l/r*x; return d; } } 3.求a关于m的乘法逆元 ll mod_inverse(ll a,ll m){ l…
从左上角到右下角,共经过n+m个节点,从其中选择n各节点向右(或者m各节点向下),所以答案就是C(n+m,n)或者C(n+m,m),组合数暴力算即可,但是要取模,所以用了乘法逆元. #include<iostream> #include<cstdio> using namespace std; typedef long long ll; #define CONST_MOD 1000000007 ll n,m; ll pow_mod(ll a,ll p,ll MOD) { ; ll…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input 数据的第一行是一个T,表示有T组数据.每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9). Output 对应每组数据输出(A/B)%9973. Sample…
题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道题我们须要必备的几个技能点. 1. LCM(C(n,0), C(n,1),-, C(n,n))=LCM(1,2,3,-n+1)/(n+1).额,这个有一篇证明Kummer定理 2.(1) 乘法逆元定义: 满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元(a,p互质). (2)为什么要用乘法逆元: 当…
洛谷3811 先用n!p-2求出n!的乘法逆元 因为有(i-1)!-1=i!-1*i (mod p),于是我们可以O(n)求出i!-1 再用i!-1*(i-1)!=i-1 (mod p)即是答案 #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<algorithm> using namespa…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1)*(P2^K2)*(P3^K3).....*(Pn^Kn)的形式.其中Pn为素数. 如2004=(22)*3*167. 那么2004x=(22x)*(3x)*(167x). ②约数和公式 对于一个已经被分解的整数A=(P1^K1)*(P2^K2)*(P3^K3)…
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1727  Solved: 1067 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29). Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3,…
before 在求解除法取模问题(a / b) % m时,我们可以转化为(a % (b * m)) / b, 但是如果b很大,则会出现爆精度问题,所以我们避免使用除法直接计算. (逆元就像是倒数一样的东西吧??) 可以使用逆元将除法转换为乘法: 假设b存在乘法逆元,即与m互质(充要条件).设c是b的逆元,即b * c≡1(modm),那么有a/b=(a/b)*1=(a/b)*b*c=a*c(%m) 即,除以一个数取模等于乘以这个数的逆元取模. 注意:在模意义下的加减乘运算都是具有封闭性的,但除法…
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个数是个经典问题,可以+1转化正整数解的个数用插板法解决:$C_{y+n-1}^{n-1}=C_{y+n-1}^y$. 而0<=y<=m,最后的结果就是—— $$\sum_{i=0}^m C_{i+n-1}^i$$ $$C_{n-1}^0+C_{n}^1+C_{n+1}^2+\dots+C_{n-1…
题目的代数系统可以看作整数模9973乘法群?然后存在乘法逆元. 于是题目要求$A \div B \pmod {9973} $其实就相当于求$A \times B^{-1}\pmod {9973} $. 只要求出B的逆元就OK了. 计算模n下的乘法逆元可以用用扩展欧几里得算法求解,即解下面的线性同余方程: $$ Ax \equiv 1 \pmod {n} $$ #include<cstdio> #include<cstring> using namespace std; #defin…
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的染色方案视为等价的,求等价类计数. 分析 给出置换求等价类计数,用Burnside引理:等价类计数=(每一个置换不动点的和)/置换数.(不知道的建议去看白书) 其中不动点是指一个染色方案经过置换以后染色与之前完全相同. 1.求不动点个数. 不动点的话同一个循环内的每一个点的颜色必须相同(否则不同颜色…
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i,j,k) = dp(x,i-cntx,j,k)+dp(x,i,j-cntx,k)+dp(x,i,j,k-cntx)表示前x个置换红蓝绿个用了i,j,k次,cntx表示第x个置换的循环数. 然后最后乘(M+1)的乘法逆元就OK了. -----------------------------------…
描述 整数分解(版本2) 一个正整数可以分解成若干个自然数之和.请你编一个程序,对于给出的一个正整数n(1<=n<=1500),求出满足要求的分解方案,并使这些自然数的乘积m达到最大. 例如n=10,则可以分解为2+2+3+3,乘积m=2*2*3*3=36 格式 输入格式 一个正整数n 输出格式 输出分解的自然数的最大乘积m 样例1 样例输入1 10 样例输出1 36 题解 通过对这道题的分析,可以发现: 如果n==1,2,3,则不用分: 如果n=4,则分成两个2和部分都是一样的: 如果n==…
A. On The Way to Lucky Plaza time limit per test 1.0 s memory limit per test 256 MB input standard input output standard output Alaa is on her last day in Singapore, she wants to buy some presents to her family and friends. Alaa knows that the best p…
https://www.cnblogs.com/zjp-shadow/p/7773566.html ------------------------------------------------------------------------------------------------------------------ 乘法逆元 转化为 解法: 1.exgcd 2.费马小定理(模数为质数的时候) a^{p-1}=1 (mod p) 那么 a*a^{p-2}=1 (mod p) 3.线性递…
1256 乘法逆元  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Input 输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9) Output 输出一个数K,满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的.…
有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^{18}$. 求解这个问题有一种方法,叫做扩展欧几里得算法(简称扩欧),其本质是一个递归求解的过程. 首先由一个前置的结论是$gcd(x,y)=gcd(y,x\%y)$.此处的$\%$为$c++$中取模操作,下同. 我们不妨设$a>b$ 当$a≠0,b=0$时,则显然有$x=1,y=0$.此时$gc…
http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举a为x头(x>1),然后算出对应的排列累计起来. 对于x头a,首先我们先缩掉必要的k头牛(x-1)*k,然后这时可以特判可以先结束(因为单调的),然后在缩好后的x个点和n-x-(x-1)*k个点进行多重排列就行了. 只是遇到一个问题,多重排列有个除法,又要取模的QAQ,即(a/b)%m,怎么做呢..…
P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 A 拓展欧几里得算法 \[ax=1(\%p)\] 转换一下也就是 \[ax+py=1\] #include<bits/stdc++.h> using namespace std; typedef long long ll; int extgcd(int a,int b,int&x,int…
POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可以得约数之和sum=(1+a1+a12+...+a1n1)*(1+a2+a22+...+a2n2)*...*(1+am+am2+...+amnm) mod 9901 对于每个(1+ai+ai2+...+aini) mod 9901=(ai(ni+1)-1)/(ai-1) mod 9901 (等比数列…
乘法逆元应用在组合数学取模问题中,这里给出的实现不见得好用 给出拓展GCD算法: 扩展欧几里得算法是指对于两个数a,b 一定能找到x,y(均为整数,但不满足一定是正数) 满足x*a+y*b=gcd(a,b) gcd(x,y)是指x 与 y的最大公约数 有啥用呢?求解形如 a*x +b*y = c 的通解 然后我们先介绍同余方程,再介绍乘法逆元 同余方程 a≡b(mod m) 等价于小学的运算式 b÷m 余数为a 也就是a mod m=b 其实介绍这个就是看怎么把≡拿掉 乘法逆元 ax ≡ (mo…
P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include <cstdio> using namespace std; #define int long long int n,mod; inline int read(){ int sum=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='…
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A=p1^c1 * p2^c2 * ...... pm^cm 则其正约数之和可以表示为:S=(1+p1+p1^2+......p1^c1)*(1+p2+p2^2+......p2^c2)*......(1+pm+pm^2+......pm^cm) 那么AB就可以表示为:S'=(1+p1+p1^2+......p1…
今天学习一下Miller-Rabbin  素性测试 和 Pollard_rho整数分解. 两者都是概率算法. Miller_Rabbin素性测试是对简单伪素数pseudoprime测试的改进. (pseudoprime测试, POJ 3641 pseudoprime numbers 简单伪素数pseudoprime的原理是费马小定理的逆命题. 费马小定理:p是素数,an-1≡1 mod p. 逆命题几乎成立. 满足逆命题叫做以a为基的伪素数. 几乎是因为被证明存在无数多个合数满足逆命题,叫做Ca…