Tarjan 求图点强联通,桥的应用】的更多相关文章

在图中求双联通和强联通分量是我们解决非树结构的图连通问题的利器 通过求求图的双联通和强联通分量能把图转化成DAG进行求解: 行走 Description 给出一个有向图,你可以选择从任意点出发走到任意点结束,问最多可以经过多少个点(重复经过只算一次). Input Format 第一行,两个整数,n和m.表示有向图的点数和边数. 接下来是m行每行输入两个数a,b,表示有一条从a到b的路. Output Format 输出最多可以经过的点数 Sample Input 10 10 6 4 0 8 5…
Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13325   Accepted: 5328 Description A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a li…
割点的定义: 感性理解,所谓割点就是在无向连通图中去掉这个点和所有和这个点有关的边之后,原先连通的块就会相互分离变成至少两个分离的连通块的点. 举个例子: 图中的4号点就是割点,因为去掉4号点和有关边之后连通块{1,2,3} {5} {6}就相互分离了. 图片来自:一篇写的较好的blog:https://www.cnblogs.com/jason2003/p/7603886.html Tarjan算法求割点: 有好多个Tarjan算法,不要傻傻分不清~~ 其实和有向图求强连通分量的Tarjan算…
我还有什么好说,还有什么好说...... 我是SBSBSBSBSBSBSBSBSBSBSBSBBSBSBSBSBSBSBSBSBS........................ 题意 思路什么的都不写了...........我只是为了记录一下我是SBSBSBSBSBBSBSBSBSBSBSBSBSBSBB 以后不要再SBSBSBSBSBSBSBSBSBBSBSBSBSBSBSBSBBSBSBSBBSBSBSBBSBSBSBSBSBBSBSBSBSBBSBSBSBSB /************…
题目链接:http://poj.org/problem?id=2186 题目大意:    每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛认为是受欢迎的. 解题思路: 假设有两头牛A和B都被其他所有牛认为是红人,那么显然,A被B认为是红人,B也被A认为是红人,即存在一个包含A.B两个顶点的圈,或者说,A.B同属于一个强…
[题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y->x是什么意思,如果是且的话就简单了,就直接判断整个图是不是强联通图即可,但是这道题是或,那么可以随手画出一个DAG 比如1->3, 2->3 这样很明显是不行的,1,2没有联通,那么如果是这样1->2->3 就可以了,或者是1->2->3->1,这样也是可以的. 很…
10分算法:对于城市网络为一条单向链的数据, 20分算法:对于n<=20的数据,暴力搜出所有的可能路径. 结合以上可以得到30分. 60分算法:分析题意可得使者会带着去的城市也就是这个城市所在强联通分量的其他城市,这个过程的代价也就是这个强联通分量的城市数-1,且他可以选择任何一个其中的城市离开这个强联通分量.于是我们求出所有强联通分量,记录下每一个包含的城市数,然后缩点.接下来再用dfs,由于数据是构造的,只能得到60分. 100分算法:在缩点之后,这个图变成了一个有向无环图,我们将一条边连向…
题目传送门!(luogu) 首先考虑问题一 不难想到,如果有一个学校作为终端机,那么跟其处于同一个强联通中的所有学校就可以不用作为终端机了. 那么,问题一也就迎刃而解了:找到所有入度为0的缩点.因为这个学校(强联通中至少有一个学校)必须作为终端机,毕竟它收不到别的学校传来的,只能自给自足. 然后考虑问题二 “任意一个学校都能作为母鸡”?试想一下,任意选取一个学校作为终端,要使得其余所有学校都能收到,只能是全图联通.因此,找到出度为0和入度为0的缩点的个数取max就ok了.(即从出度为0的点连向入…
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2926    Accepted Submission(s): 1100 Problem Description Conside…
提到Tarjan算法就不得不提一提Tarjan这位老人家 Robert Tarjan,计算机科学家,以LCA.强连通分量等算法闻名.他拥有丰富的商业工作经验,1985年开始任教于普林斯顿大学.Tarjan于1986年获得图灵奖.并于1994年当选为ACM院士. Tarjan其他奖项包括: 奈望林纳奖信息科学(1983第一个获奖者) 国家科学院的研究倡议奖 (1984) 巴黎Kanellakis奖-理论与实践( ACM1999) 帕斯卡奖章数学与计算机科学( 欧洲科学院2004) 加州理工学院杰出…
Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/5872257.html该算法的手动模拟详细 再Tarjan算法中,有如下定义. DFN[ i ] : 在DFS中该节点的时间戳 LOW[ i ] : 为i能追溯到最早的时间戳 在一个无向图中,如果有一个顶点,删除这个顶点以及这个顶点相关联的边以后,图的连通分量增多,就称这个点为割点. 割点伪代码: tarja…
题目大意: n个点 m条边的图 求大小大于1的强联通分量的个数 https://www.cnblogs.com/stxy-ferryman/p/7779347.html tarjan求完强联通分量并染色后 计算一下每种颜色的个数 就是每个强联通块的大小 #include <stdio.h> #include <cstring> #include <algorithm> #include <stack> using namespace std; ; *N];…
  为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间.Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i.  Input 输入包含多组数据,输入的第一行有两个数:N和M,接下来…
tarjan求强联通分量 变量含义说明: pre[i]:i点的被访问的时钟编号,被分配后保持不变 low[i]:i点能访问的最先的点的时钟编号,随子节点改变 scc_no[i]:i点所在的强联通分量的编号 dfs_clock:时钟序号,每访问一个新的点时都增长1 scc_cnt:强联通分量的编号 栈stk:每访问一个节点都压入栈中 他的步骤如下所述: 从根节点开始访问 为此新点的pre和low赋值现在的时间 遍历访问它的子节点 如果此点未被访问,则跳回第二步,然后跟新其low值 如果已访问但其未…
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一直没有时间学习.这两天好不容易学会了,写篇博客,也算记录一下.   一.tarjan求强连通分量 1.什么是强连通分量? 引用来自度娘的一句话: “有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(…
补坑ing... 好吧,这是第二天. 这一天我们主要围绕的就是一个人:tarjan......创造的强联通分量算法 对于这一天的内容我不按照顺序来讲,我们先讲一讲强联通分量,然后再讲割点与桥会便于理解 首先是强联通分量.. 所谓强联通分量即在一个集合中,所有的点都能互通,那么我们就称这一整个集合是一个强联通分量 那么我们怎么求一张图中有几个强联通分量呢? 首先我们要了解tarjan算法中最重要的2个数组(dfn数组:表示该点第一次出现在DFS序列中的时刻;low数组:表示该点所能追溯到的编号最小…
PS:摘自一不知名的来自大神. 1.割点:若删掉某点后.原连通图分裂为多个子图.则称该点为割点. 2.割点集合:在一个无向连通图中,假设有一个顶点集合,删除这个顶点集合,以及这个集合中全部顶点相关联的边以后.原图变成多个连通块.就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必定会分裂为两个或两个以上的子图. 5.割边集合:假设有一个边集合.删除这个边集合以后,原图变成多个连通块.就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最…
http://poj.org/problem?id=2375 题意:一个500*500的矩形,每个格子都有一个高度,不能从高度低的格子滑到高度高的格子(但相等高度可以滑),已知可以在2个相邻格子上加桥,使得无视他们的高度就可以互相滑,问最少加多少桥可以使得在任一个格子上都能到达任一个格子. 分析:很容易看出这就是相当于在一个有向图上至少加多少边可以使得其强联通,ans=max(入度0的点数,出度为0的点数),很好理解,可以把出度为0的点挂一条边到入度为0的点上,多了的随便挂.那么现在面临的问题的…
之前一直对tarjan算法的这几种不同应用比较混淆...我太弱啦! 被BLO暴虐滚过来 用tarjan求点双,很多神犇都给出了比较详细的解释和证明,在这里就不讲了(其实是这只蒟蒻根本不会orz) 这里放一下定义 这篇博客主要讲一讲求割点,点双的板子实现以及详细解释 先yy这样一道题: 有n个点,m条边,保证给出的是一个联通图,求割点 (真·最裸割点) 这道题就可以用下面这份代码实现 #pragma GCC optimize("O2") #include<iostream>…
Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) (3)         最近公共祖先 今天主要给未来的自己讲解一下前两个应用,让未来的自己不会向现在的自己一样又忘了Tarjan怎么写.熟悉DFS的话,理解起来会简单很多. (1)         有向图的强联通分量 首先解释Tarjan中几个比较重要的值 DFN[i] : 节点i被访问到的次序 L…
题目描述 ›对于一个有向图顶点的子集S,如果在S内任取两个顶点u和v,都能找到一条从u到v的路径,那么就称S是强连通的.如果在强连通的顶点集合S中加入其他任意顶点集合后,它都不再是强连通的,那么就称S是原图的一个强连通分量(SCC: Strongly Connected Component).任意有向图都可以分解成若干不相交的强连通分量,这就是强连通分量分解.把分解后的强连通分量缩成一个顶点,就得到了一个DAG(有向无环图). 现在,请求一个有向图中强连通分量的个数 输入 第一行两个数V,E,表…
1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5687  Solved: 3016[Submit][Status][Discuss] Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛认为是受欢迎的. I…
求强联通分量有很多种. <C++信息学奥赛一本通>  中讲过一个dfs求强联通分量的算法Kosdaraju,为了骗字数我就待会简单的说说.然而我们这篇文章的主体是Tarjan,所以我肯定说完之后再赞扬一下Tarjan大法好是不是 首先我们讲一下强联通分量 强联通分量指的是图的一个子图.在这个子图中,任意两个节点都可以互相到达.从定义上我们就可以看出是一个有向图来,因为任意一个无向图都符合该定义. 而它的标准定义是:有向图中任意两点都联通的最大子图. 咳咳,首先庆祝一下哈——本人博客的第一张图.…
传送门(poj3177) 这道题是Tarjan求桥的模板题.大意是要求在原图上加上数量最少的边,使得整张图成为一个边双联通分量. 具体的做法是,先在图中求出所有的桥,之后把边双联通分量缩成点,这样的话原图就变成了一棵树.之后,我们就在叶子之间加边即可.如何加最少的边呢?好像第一眼看上去,随便在两个叶子中间加一条边就能减少两个叶子,但事实上不是这样的,如果这两个叶子中间的路径数小于等于1条的话,将新形成的边双联通分量缩点之后有可能出现新的叶子.就像这张图一样,如果连接红色的边,那么新的图会多出一个…
题目链接:https://vijos.org/p/1023 最近在练强联通分量,当然学的是tarjan算法 而这一道题虽然打着难度为3,且是tarjan算法的裸题出没在vijos里面 但其实并不是纯粹只需要tarjan求有几个强联通就可以过的(我以为这是所谓的裸题) 其实这题还需要对每一个强联通缩点,可能被所谓裸题误导的OIer们看不破这个 毕竟,这个样例数据也是坑啊,样例数据都可以说是无向图了,哪里还是什么有向图 所以样例数据不是万能的,但是没过样例数据是万万不能的 至于为什么缩点我们来想一想…
若low[v]>dfn[u],则(u,v)为割边.但是实际处理时我们并不这样判断,因为有的图上可能有重边,这样不好处理.我们记录每条边的标号(一条无向边拆成的两条有向边标号相同),记录每个点的父亲到它的边的标号,如果边(u,v)是v的父亲边,就不能用dfn[u]更新low[v].这样如果遍历完v的所有子节点后,发现low[v]=dfn[v],说明u的父亲边(u,v)为割边. void tarjan(int x) { vis[x]=1; dfn[x]=low[x]=++num; for(int i…
题目链接:http://poj.org/problem?id=1236 题目大意:N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输.问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件.问题2:至少需要添加几条传输线路(边),使任意向一个学校发放软件后,经过若干次传送,网络内所有的学校最终都能得到软件. 解题思路:首先用tarjan求得所有强联通分量,将每个强联通分量看成一个点,这样会得到一个有向无环图DAG, 那么…
题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u接收到. 现要求解两个问题: TaskA: 最少分发给几个学校,就可以使所有的学校都能得到软件. TaskB: 最少增加几条边,就可以使得,发软件给任一学校,所有学校都可以收到. 思路:先进行强联通分量分解,然后缩点,并计算缩点后每个点的出度.入度.入度为0的点的总数为 a ,出度为0的点总数为 b…
http://poj.org/problem?id=1236第一问:需要几个学校存在软件,才能通过传递,使得所有的学校都有软件 用tarjan算法求出强联通分量后,将每个联通分量缩成一个点,那么问题1的答案就是入度为0的点的个数 为什么?入度为0的点,肯定不能通过其他学校传送软件给他,所以他必须存在一份软件第二问:需要加几条边,才能使得图强联通 缩点后,a为所有入度为0的点的个数,b为所有出度为0的点的个数,那么答案就是max(a,b) #include <stdio.h> #include…
定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强连通分量,{2,3,4,5}是一个强连通分量.而Tarjan算法可用于求解强连通分量. Tarjan算法: Tarjan算法是基于深度优先搜索的算法,每个强连通分量都是搜索树中的一个子树. 实现:dfn[u]表示到u节点时的标记(时间戳),low[u]表示u所能走到的节点中,点的最小的次序号(dfn…