首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Spark RDD概念学习系列之Pair RDD的transformation操作
】的更多相关文章
Spark RDD概念学习系列之Pair RDD的分区控制
不多说,直接上干货! Pair RDD的分区控制 Pair RDD的分区控制 (1) Spark 中所有的键值对RDD 都可以进行分区控制---自定义分区 (2)自定义分区的好处: 1) 避免数据倾斜 2) 控制task并行度 自定义分区方式 class DomainNamePartitioner(numParts: Int) extends Partitioner { override def numPartitions: Int = numParts override def getPar…
Spark RDD概念学习系列之Pair RDD的action操作
不多说,直接上干货! Pair RDD的action操作 所有基础RDD 支持的行动操作也都在pair RDD 上可用…
Spark RDD概念学习系列之Pair RDD的transformation操作
不多说,直接上干货! Pair RDD的transformation操作 Pair RDD转换操作1 Pair RDD 可以使用所有标准RDD 上转化操作,还提供了特有的转换操作. Pair RDD转换操作2…
Spark RDD概念学习系列之典型RDD的特征
不多说,直接上干货!…
Spark RDD概念学习系列之如何创建Pair RDD
不多说,直接上干货! 创建Pair RDD Python语言 pairs = lines.map(lambda x: (x.split(], x)) scala语言 val pairs = lines.map(x => (x.split(), x)) Java语言 PairFunction keyData = new PairFunction() { public Tuple2 call(String x) { ], x); } }; JavaPairRDD pairs = lines.map…
Spark RDD概念学习系列之什么是Pair RDD
不多说,直接上干货! 什么是Pair RDD (1)包含键值对类型的RDD被称作Pair RDD. (2)Pair RDD通常用来进行聚合计算. (3)Pair RDD通常由普通RDD做ETL转换而来. 关于ETL的知识,请移步 http://www.cnblogs.com/zlslch/category/1008607.html…
Spark RDD概念学习系列之RDD的checkpoint(九)
RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点? 答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的.为了避免缓存丢失重新计算带来的开销,Spark又引入检查点机制. RDD的缓存能够在第一次计算完成后,将计算结果保存到内存.本地文件系统或者Tachyon(分布式内存文件系统)中.通过缓存,Spark避免了RDD上的重复计算,能够极大地提升计算速度.但是,如果缓存丢失了,则需要重新计算.如果…
Spark RDD概念学习系列之RDD的创建(六)
RDD的创建 两种方式来创建RDD: 1)由一个已经存在的Scala集合创建 2)由外部存储系统的数据集创建,包括本地文件系统,还有所有Hadoop支持的数据集,比如HDFS.Cassandra.HBase.Amazon S3等. RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建.这些确定性操作称为转换,如map.filter.groupBy.join. 第1个RDD:代表了spark应用程序输入数据的来源,通过Transformation来对RDD进行各种算子的…
Spark RDD概念学习系列之RDD是什么?(四)
RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的.详细见 Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类,具体由各子类实现,如MappedRDD. ShuffledRDD等子类. Spark将常用的大数据操作都转化成为RDD的子类. 官方对RDD的解释是:弹性分布式数据集,全称是Resilient Distributed Datasets.RDD是只读的.分区记录的集合.RDD只能基于在稳定物理存储…
Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)
RDD的依赖关系? RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每一个parent RDD的Partition最多被子RDD的一个Partition使用,如图1所示. 2)宽依赖指的是多个子RDD的Partition会依赖同一个parent RDD的Partition,如图2所示. RDD作为数据结构,本质上是一个只读的分区记录集合.一个RDD可以包含多个分区,每…