(三)用go实现平衡二叉树】的更多相关文章

一.题目 输入一棵二叉树,判断该二叉树是否是平衡二叉树. 二.思路 详解代码. 三.代码 public class Solution {     //判断根节点左右子树的深度,高度差超过1,则不平衡     public boolean IsBalanced_Solution(TreeNode root) {         if (root==null) {             return true;         }         int left = getTreeDepth(r…
前面介绍了两种集合的用法,它们的共性为每个元素都是唯一的,区别在于一个无序一个有序.虽说往集合里面保存数据还算容易,但要从集合中取出数据就没那么方便了,因为集合居然不提供get方法,没有get方法怎么从一堆数据之中挑出你想要的东西呢?难道只能从头遍历集合的所有元素,再逐个加以辨别吗?显然这个缺陷是集合的硬伤,好比去银行开账户,存钱的时候大家都开开心心,可是等到取钱的时候,却发现柜员拿出一叠存单一张一张找过去,等找到你的存单之时,黄花菜儿都凉了.因此,实际开发中一般很少直接使用集合,而是使用集合的…
简介 自平衡二叉树(AVL)属于二叉平衡树的一类,此类树主要完成一个从键到值的查找过程,即字典(或映射),它维护树高度的方式与其他数据结构不同. 自平衡规则: AVL树的左.右子树都是AVL树 左.右子树的高度差不超过1 在数据结构中,最常见的数据间关系的抽象就是集合(Collection)和字典(Dictionary). 集合就是线性表(元素允许重复),而字典是一种非多键映射关系(键不允许重复). 对集合而言,一个班中的所有学生构成一个集合,可以是有序的(有序集合)也可以是无序的(无序集合),…
将二叉排序树的的缺点优化,继承二叉排序的树的优化 左子树和右子树的高度差的绝对值不超过1…
今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,AVL是发明平衡二叉树的两个科学家的名字的缩写,在此就不做深究了.其实平衡二叉树就是二叉排序树的一种,比二叉排序树多了一个平衡的条件.在一个平衡二叉树中,一个结点的左右子树的深度差不超过1. 本篇博客我们就依照平衡二叉树的特点,在创建二叉排序树的同时要保证结点的左右子树的深度差不超过1的规则.当我们往二叉排序树…
平衡二叉树的插入过程:http://www.cnblogs.com/hujunzheng/p/4665451.html 对于二叉平衡树的删除采用的是二叉排序树删除的思路: 假设被删结点是*p,其双亲是*f,不失一般性,设*p是*f的左孩子,下面分三种情况讨论: ⑴ 若结点*p是叶子结点,则只需修改其双亲结点*f的指针即可. ⑵ 若结点*p只有左子树PL或者只有右子树PR,则只要使PL或PR 成为其双亲结点的左子树即可. ⑶ 若结点*p的左.右子树均非空,先找到*p的中序前趋结点*s(注意*s是*…
平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵树,所以它又叫AVL树.平衡二叉树要求对于每一个节点来说,它的左右子树的高度之差不能超过1,如果插入或者删除一个节点使得高度之差大于1,就要进行节点之间的旋转,将二叉树重新维持在一个平衡状态.这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(…
平衡二叉树(AVL树)定义如下:平衡二叉树或者是一棵空树,或者是具有以下性质的二叉排序树: (1)它的左子树和右子树的高度之差绝对值不超过1: (2)它的左子树和右子树都是平衡二叉树. AVL树避免了平衡二叉树初始序列有序建立的类似单链表情况,提高了查找效率. 1.AVL树的相关参量定义 #define _CRT_SECURE_NO_DEPRECATE #include<stdio.h> #include<stdlib.h> #include<windows.h> #d…
平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵树,所以它又叫AVL树.平衡二叉树要求对于每一个节点来说,它的左右子树的高度之差不能超过1,如果插入或者删除一个节点使得高度之差大于1,就要进行节点之间的旋转,将二叉树重新维持在一个平衡状态.这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(…
学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建立的树如图2,才能够最大地体现二叉树的优点.            在上述的例子中,图2就是一棵平衡二叉树.科学家们提出平衡二叉树,就是为了让树的查找性能得到最大的体现(至少我是这样理解的,欢迎批评改正).下面进入今天的正题,平衡二叉树. AVL的定义 平衡二叉查找树:简称平衡二叉树.由前苏联的数学…