Task 1 \(\mathcal{Prob:}\) \((3x - 2y)^{18}\) 的展开式中, \(x^5y^{13}\) 的系数是什么?\(x^8y^9\) 的系数是什么? \(\mathcal{Sol:}\) 由二项式定理可得:\(x^5y^{13}\) 的系数为 \(-\binom {18} {5} \times 3^5 \times 2^{13}\),没有 \(x^8y^9\) 这一项. Task 2 \(\mathcal{Prob:}\) 用二项式定理证明:\(3^n = {…
主要是记录思路,不要被刚开始错误方向带偏了 www 「CF1110F」Nearest Leaf 特殊性质:先序遍历即为 \(1 \to n\),可得出:叶子节点编号递增或可在不改变树形态的基础上调整为递增. 这样就可找出区间 \([l, r]\) 中的叶子节点有哪些了,预处理深度,暴力 \(O(n ^ 2)\). 考虑柿子 \(\min \{\mathrm{d} (y) - \mathrm{d} (\mathrm{f} (x))\}\),其中 \(d(x)\) 表示深度,\(f(x)\) 表示父…
\(\mathcal{Description}\)   求出处 owo.   给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \(t\),使得 \(t<s\) 且 \(s,t\) 的后缀数组(\(\text{Suffix Array}\),sa[])相同.   \(n\le50\).(建议开到 \(n\le2\times10^5\). \(\mathcal{Solution}\) 奇怪的结论   若存在 \(t\),则存在一个…
\(\mathcal{Description}\)   link.   给定 \(n\) 个水果,每个结点可能有甜度 \(v_i\),或不甜(\(v_i=-1\)).现在把这些水果串成一棵无根树.称一个水果"真甜",当且仅当其本身和至少一个邻接水果是甜的.每个"真甜"水果对树的甜度产生 \(v_i\) 的贡献.求所有甜度不超过 \(maxv\) 的树.   \(n\le40\). \(\mathcal{Solution}\)   令无序地取恰好 \(i\) 个水果使…
\(\mathcal{Description}\)   Link.   Bessie 在一张含 \(n\) 个结点的有向图上遍历,站在某个结点上时,她必须按下自己手中 \(m\) 个按钮中处于激活状态的一个才能走向其他结点或终止遍历(不能原地等待).初始时,所有按钮都处于激活状态,按下 \(i\) 号按钮时,\(i\) 号按钮变为非激活状态,所有编号 \(<i\) 的按钮被激活.   给定 \(q\) 组形如 \((b_s,s,b_t,t)\) 的询问,求 Bessie 从 \(s\) 出发,第…
\(\mathcal{Description}\)   Link.   有 \(n\) 个牛棚,大小为 \(t_{1..n}\),\(n\) 头奶牛,大小为 \(s_{1..n}\),奶牛只能住进不小于自己的牛棚,每个牛棚最多住一头奶牛.求满足不能让更多奶牛住进牛棚的安排方案数,答案对 \((10^9+7)\) 取模.   \(n\le3\times10^3\). \(\mathcal{Solution}\)   把 \(s\) 和 \(t\) 倒一块儿升序排序,大小相同奶牛优先.那么相当于奶牛…
T1 小 M 的作物 先从简化题目入手,考虑先去掉 \(c\) 的额外收益.然后尝试将所有作物种在 \(B\), 则目前得到了 \(\sum \limits_{i = 1} ^n b_i\) 的收益. 接下来我们将每一个作物 \(i\) 分成两个物品,收益分别为 \(a_i,-b_i\),且规定如果想要选收益为 \(a_i\) 的物品,则一定也要选收益为 \(-b_i\) 的物品. 于是现在成为了最大权闭合子图的裸题. 再加上 \(c\) 的额外收益.我们可以分别将每一个额外收益 \(j\),分…
\(\mathcal{Description}\)   Link.   给定一棵包含 \(n\) 个点,有点权和边权的树.设当前位置 \(s\)(初始时 \(s=1\)),每次在 \(n\) 个结点内随机选择目标结点 \(t\),付出「\(s\) 到 \(t\) 的简单路径上的边权之和」\(\times\)「\(t\) 的点权」的代价,标记(可以重复标记)点 \(t\) 并把 \(s\) 置为 \(t\).求每个点至少被标记一次时(其中 \(1\) 号结点一开始就被标记)代价之和的期望.答案对…
对于理解服务器和网络来说,「协议」是不可缺少的概念. 「协议(protocol)」有「规则,规定」的意思. 实际上「协议」的函数很广,在通信领域,「协议」规定了「在通信时,什么样的情况下,以什么样的顺序,什么样的方式交互什么样的数据」. 抽象的去理解「协议」可能会比较困难,下面来举个例子. 通过Web以HTML方式交互时使用的协议是「HTTP」(Hyper Text Transfer Protocol).这个协议最重要的就是规定了服务器和客户端之间以HTML方式交互的规则. 比如,客户端连接上服…
layout: post title: 「kuangbin带你飞」专题十四 数论基础 author: "luowentaoaa" catalog: true tags: mathjax: true - kuangbin - 数论 传送门 A - Bi-shoe and Phi-shoe(欧拉函数的性质) 题意 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 思路 考察了欧拉函数的简单性质,即满足欧拉函数(k)>=N的最小数为N+1之后的第…