51nod1355】的更多相关文章

[51nod1355]斐波那契的最小公倍数(min-max容斥) 题面 51nod 题解 显然直接算还是没法算的,所以继续考虑\(min-max\)容斥计算. \[lcm(S)=\prod_{T\subset S}gcd(T)^{(-1)^{|T|+1}}\] 而斐波那契数列满足\(gcd(f(a),f(b))=f(gcd(a,b))\), 于是和最小公倍佩尔数一样的类似处理 \[lcm(S)=\prod_{i=1}^{\infty}f(i)^{\sum_{T\subset S}[gcd(T)=…
Description 给定 \(n\) 个正整数 \(a_1,a_2,...,a_n\),求 \(\text{lcm}(f_{a_1},f_{a_2},...,f_{a_n})\).其中 \(f_i\) 是斐波那契数列第 \(i\) 项. \(n\leq 50000,a_i\leq 10^6\). Sol 首先关于集合 \(S\) 的\(\text{lcm}\)可以用类似\(\text{min-max}\)容斥的式子搞一下,变成跟\(\gcd\)有关: \[ \text{lcm}(T)=\pr…