RMQ问题ST表】的更多相关文章

士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比较,计算出两个人的杀敌数差值,用这种方法一方面能鼓舞杀敌数高的人,另一方面也算是批评杀敌数低的人,起到了很好的效果. 所以,南将军经常问军师小工第i号士兵到第j号士兵中,杀敌数最高的人与杀敌数最低的人之间军功差值是多少. 现在,请你写一个程序,帮小工回答南将军每次的询问吧. 注意,南将军可能询问很多…
2017-08-26 22:25:57 writer:pprp 题意很简单,给你一串数字,问你给定区间中最大值减去给定区间中的最小值是多少? 用ST表即可实现 一开始无脑套模板,找了最大值,找了最小值,分别用两个函数实现,实际上十分冗余 所以TLE了 之后改成一个函数中同时处理最大值和最小值,就可以了 AC代码如下: /* @theme:poj 3264 @writer:pprp @declare:ST表(sparse table)稀疏表,用动态规划的思想来解决RMQ问题: @date:2017…
思路: (我也不知道这是不是正解) ST表预处理出来原数列的两点之间的min 再搞一个动态开节点线段树 节点记录ans 和标记 lazy=-1 当前节点的ans可用  lazy=0 没被覆盖过 else 区间覆盖 push_up的时候要注意好多细节,, 数组尽量往大开 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; ; ],lson…
ST表 \(\text{ST}\) 表是用于解决可重复贡献问题的数据结构. 可重复贡献问题:区间按位和.区间按位或.区间 \(\gcd\) .区间最大.区间最小等满足结合律且可重复统计的问题. 模板预处理:(以区间最大值为例) void pre_work() { for(int i=2;i<=n;i++) lg2[i]=lg2[i/2]+1; pow2[0]=1; for(int i=1;i<=lg2[n];i++) pow2[i]=pow2[i-1]*2; for(int i=1;i<…
#include<iostream> #include<cstdio> #include<cmath> using namespace std; int N, M, a[100009], l, r, st[100009][20]; inline int read() { int s=0, w=1; char ch=getchar(); while( ch<'0' || ch>'9' ){ if(ch=='-') w=-1; ch=getchar(); } w…
ST表 这是一种神奇的数据结构,用nlogn的空间与nlongn的预处理得出O(1)的区间最大最小值(无修) 那么来看看这个核心数组:ST[][] ST[i][j]表示从i到i+(1<<j)的范围内的最大/最小值 那么来看看代码吧. #include <cstdio> #include <algorithm> using namespace std; ][],n; void makeST() { ;j<=;j++) { ;i+(<<j)-<=n;…
此算法可用来处理区间最值问题,预处理时间为O(nlogn),查询时间为O(1) 此算法主要基于倍增思想,用以数组st[i][j]表示从第i个元素开始向后搜2的j次方的最值 可用递推的方式求得:st[i][j]=min/max(st[i][j-1],st[i+1<<(j-1)][j-1]) 下面的模板以区间最大值为例 #include<iostream>#include<cstdio>#include<cstring>#include<string>…
洛谷3865 #include<cstdio> #include<algorithm> #include<cmath> using namespace std; ; ],n,m,l,r; void read(int &k){ k=; ; char c=getchar(); ),c=getchar(); +c-',c=getchar(); k*=f; } int main(){ read(n); read(m); ;i<=n;i++) read(f[i][]…
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq10^5\). \(Solution\) 一个集合直径的两端点,在被划分为两个集合后一定是两个集合直径的四个端点中的两个. 即假设将\(S\)分为两个集合后,另外两个集合的直径的两端点分别为a,b和c,d,那么\(S\)集合的直径的两端点一定是a,b,c,d中的两个. 证明类似树的直径. 所以信息可…
我当时知道ST表可以 \(O(1)\) 求 LCA 的时候是极为震惊的,可以在需要反复使用 LCA 的时候卡常使用. ST表!用于解决 RMQ问题 ST表 我可能写得不好,看专业的 怎么实现? 考虑把求 LCA 转换为 RMQ问题.我们对于树求一遍欧拉序,就是那个回溯也会记录的那个.我们处理出每个数第一次在欧拉序中出现的位置,欧拉序上每个位置的深度,以及欧拉序上每个位置出现的点的编号.这些信息都可以在一次 \(dfs\) 中求出.然后不难发现在回溯过程中加入的点是之前遍历的点的祖先,由此也不难推…