[GXOI/GZOI2019]特技飞行】的更多相关文章

题目地址:P5302 [GXOI/GZOI2019]特技飞行 这里是官方题解(by lydrainbowcat) 题意 给 \(10^5\) 条直线,给 \(x = st\) 和 \(x = ed\) 两个位置 在两条直线 \(l1,l2\) 交点,可以交换 \(l1,l2\) 接下来的部分(变成两条折线) 交换或不交换分别可以获得固定的分数 \(a\) 和 \(b\) 另外有 \(10^5\) 个观测点可以观测到一定范围内情况(曼哈顿距离),在观测范围内的点额外计分 \(c\) 要求最后在 \…
Problem loj3085 bzoj不放题面差评 题意概要:给出两条竖直直线,再给出 \(n\) 架飞机的初始航线:一条接通这两条直线的线段,保证航线交点不在两条直线上.现要求安排所有飞机在航线相交处做特技: 擦身而过:两架飞机按原方向线路继续前进,一次得分 \(b\) 对向交换:两架飞机交换线路继续前进,一次得分 \(a\) 另外,给定 \(k\) 个边界与坐标轴成 \(45°\)角 的正方形,若一次特技被至少一个正方形囊括,则总得分加 \(c\) 现要求决策每次相遇做的特技,求最大/最小…
传送门 强行二合一可还行 首先\(c\)的贡献是不会变的,先考虑求出多少交点被矩形覆盖,交点的话可以按左端点纵坐标从下到上顺序枚举一条线段,然后维护右端点纵坐标的set,把之前处理过线段的右端点放进set里,然后所有 右端点在当前线段右端点上方的线段 都是和当前线段有交点的,直接算出来,并且这样算不会算重 本题中的矩形是斜着的,但是如果我们把所有点绕原点顺时针转\(45^\circ\),那么矩形的四边都会和坐标轴平行,我们可以直接考虑每个点是否被矩形覆盖,把坐标离散化,然后套扫描线扫横坐标,用树…
题目链接 [https://www.luogu.org/problem/P5302] 思路:这道题可以说是两道题的合并.注意到\(c\)的分数与 \(a\)和\(b\)的分数 无关,也就是说可以分成两部分来计算.首先,对于\(c\)的分数,发现就是判断点是否在正方形内.于是可以将坐标轴旋转45°(坐标\((x,y)\)映射为坐标\((x+y,x-y)\)不理解的可以手玩一下--),然后就可以转化为经典的扫描线问题了.而后,对于a和b的分数对极值的贡献,可以发现这取决于「对向交换」的次数.「对向交…
感觉是6题中最难的一题,其实这题是一个二合一: 第一问:给定平面上若干点和k个关键点,关键点覆盖一个45°倾斜的正方形范围r,求有多少点被至少一个关键点覆盖.这个可以曼哈顿转切比雪夫距离,然后再扫描线求解,复杂度O(nlogn) 第二问:求最少和最多有多少次擦肩而过.显然每个交点都可以做对向交换,这是最少擦肩而过的次数.最多的次数,假设全部擦肩而过得到排列p,对向交换实际上是交换两元素位置,用最小交换次数还原排列即可. #include<bits/stdc++.h> using namespa…
GXOI/GZOI2019题解 P5300 [GXOI/GZOI2019]与或和 一眼题.. 显然枚举每个二进制位,答案就变成了全1子矩阵数量. 这个xjb推推,单调栈一下就行了. #include<bits/stdc++.h> #define il inline #define vd void #define mod 1000000007 typedef long long ll; il ll gi(){ ll x=0,f=1; char ch=getchar(); while(!isdig…
Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代表着水平位置,纵坐标代表着飞行高度. 在最初的计划中,这 \(n\) 架飞机首先会飞行到起点 \(x = x_{st}\) 处,其中第 \(i\) 架飞机在起点处的高度为 \(y_{i,0}\).它们的目标是终点 \(x = x_{ed}\) 处,其中第 \(i\) 架飞机在终点处的高度应为 \(y…
LOJ#3085. 「GXOI / GZOI2019」特技飞行 这显然是两道题,求\(C\)是一个曼哈顿转切比雪夫后的线段树扫描线 求\(AB\),对向交换最大化和擦身而过最大化一定分别为最大值和最小值 对向交换最大化是每个点都对向交换 擦身而过最大化需要对向交换最小化,我们一次对向交换相当于交换任意两个数,所以就是每个置换圈的点数-1累加即可 #include <bits/stdc++.h> #define fi first #define se second #define pii pai…
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 或和. 分析: 或和与是一个东西,只要把所有数都异或上\((1<<31)-1\)然后再从总答案中减掉就能互相转化,考虑求与. 枚举每一位,转化成算有多少个全\(1\)子矩形,单调栈经典问题.总时间复杂度\(\mathrm{O}(n^2\log n)\). 代码: #include <cst…
2697: 特技飞行 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 607  Solved: 363[Submit][Status] Description 神 犇航空开展了一项载客特技飞行业务.每次飞行长N个单位时间,每个单位时间可以进行一项特技动作,可选的动作有K种,每种动作有一个刺激程度Ci.如果连 续进行相同的动作,乘客会感到厌倦,所以定义某次动作的价值为(距上次该动作的时间)*Ci,若为第一次进行该动作,价值为0.安排一种方案,使得总价…