堆其实也是树结构(或者说基于树结构),一般可以用堆实现优先队列. 二叉堆 堆可以用于实现其他高层数据结构,比如优先队列 而要实现一个堆,可以借助二叉树,其实现称为: 二叉堆 (使用二叉树表示的堆). 但是二叉堆,需要满足一些特殊性质: 其一.二叉堆一定是一棵完全二叉树 (完全二叉树可以用数组表示,见下面) 完全二叉树缺失的部分一定是在右下方.(每层一定是从左到右的顺序优先存放) 完全二叉树的结构,可以简单理解成按层安放元素的.(所以数组是不错的底层实现) 其二.父节点一定比子节点大 (针对大顶堆…
二叉堆 1 二叉堆的定义 堆是一个完全二叉树结构(除了最底下一层,其他层全是完全平衡的),如果每个结点都大于它的两个孩子,那么这个堆是有序的. 二叉堆是一组能够用堆有序的完全二叉树排序的元素,并在数组中按照层级存储(不用数组的第一个位置) 2 二叉堆的性质 最大的元素在a[1] (root结点) 每个k的父亲在k/2 每个k的孩子在k*2和k*2+1 3 二叉堆的操作 3.1 上浮(孩子大于父亲)——对应插入操作 循环,每次比较自己和父亲,如果比父亲大就交换,直到root. 3.2 插入 先把元…
[0]README 0.1)为什么有这篇文章?因为 Dijkstra算法的优先队列实现 涉及到了一种新的数据结构,即优先队列(二叉堆)的操作需要更改以适应这种新的数据结构,我们暂且吧它定义为Distance, 而不是单纯的int类型: 0.2)本文源代码均为原创, int类型的优先队列(二叉堆)的操作实现,参见http://blog.csdn.net/PacosonSWJTU/article/details/49498255, (并比较他们的打印结果,很有必要) [1]因为 Dijkstra算法…
参考:漫画:什么是二叉堆? 大根堆 小根堆 参考:漫画:什么是堆排序? 参考:漫画:什么是优先队列? 参考:[video]视频--第14周10--第8章排序10--8.4选择排序3--堆排序2--堆调整 堆的调整(小根堆) 输出堆顶元素之后,以堆中最后一个元素替代之: 然后将根节点值与左.右子树的根节点值进行比较,并与其中小者进行交换: 重复上述操作,直至叶子节点,将得到新的堆,称这个从堆顶至叶子的调整过程为“筛选”. 大根堆与上面类似. 通过3中方法实现ADT: 堆的形式 无序array 有序…
实现优先队列结构主要是通过堆完成,主要有:二叉堆.d堆.左式堆.斜堆.二项堆.斐波那契堆.pairing 堆等. 1. 二叉堆 1.1. 定义 完全二叉树,根最小. 存储时使用层序. 1.2. 操作 (1). insert(上滤) 插入末尾 26,不断向上比较,大于26则交换位置,小于则停止. (2). deleteMin(下滤) 提取末尾元素,放在堆顶,不断下滤: (3). 其他操作: 都是基于insert(上滤)与deleteMin(下滤)的操作. 减小元素:减小节点的值,上滤调整堆. 增大…
package practice; import edu.princeton.cs.algs4.StdRandom; public class TestMain { public static void main(String[] args) { int[] a = new int[20]; for (int i = 0; i < a.length; i++) { int temp = (int)(StdRandom.random()*100); a[i] = temp; } for (int…
python下实现二叉堆以及堆排序 堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆, 正如其名, 大头堆的第一个元素是最大的, 每个有子结点的父结点, 其数据值都比其子结点的值要大.小头堆则相反. 我大概讲解下建一个树形堆的算法过程:找到N/2 位置的数组数据, 从这个位置开始, 找到该节点的左子结点的索引, 先比较这个结点的下的子结点, 找到最大的那个, 将最大的子结点的索引赋…
二叉堆简介 平时所说的堆,若没加任何修饰,一般就是指二叉堆.同二叉树一样,堆也有两个性质,即结构性和堆序性.正如AVL树一样,对堆的以此操作可能破坏者两个性质中的一个,因此,堆的操作必须要到堆的所有性质都被满足时才能终止. 结构性质 堆是一棵完全填满的二叉树,因为完全二叉树很有规律,所以它可以用一个数组表示而不需要指针.如下图所示,图2中的数组对应图1中的堆.                   图1:二叉堆                                            …
优先队列简单介绍: 操作系统表明上看着是支持多个应用程序同一时候执行.其实是每一个时刻仅仅能有一个进程执行,操作系统会调度不同的进程去执行. 每一个进程都仅仅能执行一个固定的时间,当超过了该时间.操作系统就会暂停当前执行的进程,去调度其他进程来执行. 实现这样的进程调度的一种方法是使用队列. 開始的时候进程被放在队列的末尾,调度程序将重复提取队列中的第一个进程来执行.直到执行完成或时间片用完,若进程没有执行完成则将该进程放入队列的末尾.这样的策略不是特别合适,由于可能一些短的进程须要等待非常长的…
这篇的主题主要是Heapsort(堆排序),下一篇ADT数据结构随笔再谈谈 - 优先队列(堆). 首先,我们先来了解一点与堆相关的东西.堆可以实现优先队列(Priority Queue),看到队列,我们马上就想到了队列的一个特点 - 先进先出(FIFO - first in first out),但优先队列有些不同的地方,优先队列是一种具有优先级先出的数据结构. 堆的结构: typedef int ElemType; typedef struct { ElemType * arr; int si…
哟,有实用价值 可以看到,加入是随机的,而吐出是顺序的. # coding = utf-8 # 使用二叉堆实现的优先队列(列表) class BinaryHeap: def __init__(self): self.heap_list = [0] self.current_size = 0 def perc_up(self, i): while i // 2 > 0: if self.heap_list[i] < self.heap_list[i//2]: self.heap_list[i//…
转载请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/6293807.html java.util.concurrent.PriorityBlockingQueue内部用二叉堆实现了一个优先队列,所有插入的元素必须实现java.lang.Comparable接口.由于完全二叉树可以用数组来表示,所以队列内部元素存放在可变长度数组queue里. private transient Object[] queue; //用于存放元素的数组 一 插入元素入队 p…
二叉堆因为对应着一棵完全二叉树,因而可以通过线性数组的方式实现. 注意,数组第 0 个位置上的元素,作为根,还是第 1 个位置上的元素作为根? 本文给出的实现,以数组第 1 个位置上的元素作为根,则其两个孩子 ⇒ 2*i, 2*i+1 而第 0 个位置上的元素,则用来作为标志变量(Size 不包括此变量): 在元素逐个插入的过程中(插入在合适的位置),实现二叉堆的构建:自然删除也需按着指定的规则: 1. 声明 struct HeapStruct; typedef struct HeapStruc…
优先队列的特点 普通队列遵守先进先出(FIFO)的规则,而优先队列虽然也叫队列,规则有所不同: 最大优先队列:优先级最高的元素先出队 最小优先队列:优先级最低的元素先出队 优先队列可以用下面几种数据结构来实现: 基于堆 heap,包括下面几种堆: 二叉堆 多项式堆 Fibonacci 堆 基于二叉搜索树 BST 如果用线性数据结构来实现优先级队列,则时间复杂度均为 O(n).而如果用二叉堆来实现,时间复杂度可以提高到 O(logn).下面以二叉堆为例. 实现二叉堆 二叉堆有两个限制: 二叉堆必须…
一.前言 二叉堆是一个特殊的堆,其本质是一棵完全二叉树,可用数组来存储数据,如果根节点在数组的下标位置为1,那么当前节点n的左子节点为2n,有子节点在数组中的下标位置为2n+1.二叉堆类型分为最大堆(大顶堆)和最小堆(小顶堆),其分类是根据父节点和子节点的大小来决定的,在二叉堆中父节点总是大于或等于子节点,该二叉堆成为最大堆,相反地称之为最小堆.因此,最大堆父节点键值大于或等于子节点,最小堆父节点键值小于或等于子节点.根据二叉堆的特点,二叉堆可以用来实现排序.有限队列等.堆排序就是利用二叉堆的特…
前言 在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证 内存和速度的效率,我们可能第一个想法就是利用排序,然后截取前10或前100,而排序对于量不是特别大的时候没有任何问题,但只要量特别大是根本不可能 完成这个任务的,比如在一个数组或者文本文件里有几亿个数,这样是根本无法全部读入内存的,所以利用排序解决这个问题并不是最好的,所以我们这里就用 php去实现一个小顶堆来解决这个问题. 二叉堆 二叉堆是一种特殊的…
堆在存储器中的表示是数组,堆只是一个概念上的表示.堆的同一节点的左右子节点都没有规律. 堆适合优先级队列(默认排列顺序是升序排列,快速插入与删除最大/最小值). 数组与堆 堆(完全二叉树)(构造大顶堆或者小顶堆的时间复杂度:O(logn)) 堆实现的优先级队列虽然和数组实现相比删除慢了些,但插入的时间快的多了: 当速度很重要且有很多插入操作时,可以选择堆来实现优先级队列. 堆插入删除的效率:时间复杂度是:O(logn). 小顶堆:父节点的值 <= 左右孩子节点的值 大顶堆:父节点的值 >= 左…
二叉堆(binary heap) 二叉堆数据结构是一种数组对象,它可以被视为一棵完全二叉树.同二叉查找树一样,堆也有两个性质,即结构性和堆序性.对于数组中任意位置i上的元素,其左儿子在位置2i上,右儿子在左儿子后的单元2i+1中,它的父亲在[i/2](向下取整)中. 在一个小顶堆中,对于每一个节点X,X的父亲中的关键字小于(或等于)X中的关键字,根节点除外(它没有父亲). 因此,一个数据结构将由一个数组.一个代表最大值的整数.以及当前的堆的大小组成.一个典型的优先队列(priority queu…
题意:给出n根木板,需要把它们连接起来,每一次连接的花费是他们的长度之和,问最少需要多少钱. 和上一题果子合并一样,只不过这一题用long long 学习的手写二叉堆的代码,再好好理解= = #include<iostream> #include<cstdio> #include<cstring> #include <cmath> #include<stack> #include<vector> #include<map>…
打印二叉堆:利用层级关系 我这里是先将堆排序,然后在sort里执行了打印堆的方法printAsTree() public class MaxHeap<T extends Comparable<? super T>> { private T[] data; private int size; private int capacity; public MaxHeap(int capacity) { this.capacity = capacity; this.size = 0; thi…
注:本节主要讨论最大堆(最小堆同理). 一.堆的概念     堆,又称二叉堆.同二叉查找树一样,堆也有两个性质,即结构性和堆序性.     1.结构性质:     堆是一棵被完全填满的二叉树,有可能的例外是在底层,底层上的元素从左到右填入.这样的树称为完全二叉树(complete binary tree).下图就是这样一个例子.          对于完全二叉树,有这样一些性质:     (1).一棵高h的完全二叉树,其包含2^h ~ (2^(h+1) - 1)个节点.也就是说,完全二叉树的高是…
2014.06.15 22:14 简介: 堆是一种非常实用的数据结构,其中以二叉堆最为常用.二叉堆可以看作一棵完全二叉树,每个节点的键值都大于(小于)其子节点,但左右孩子之间不需要有序.我们关心的通常只有堆顶的元素,而整个堆则被封装起来,保存在一个数组中. 图示: 下图是一个最大堆: 实现: 优先队列是STL中最常用的工具之一,许多算法的优化都要利用堆,使用的工具就是优先队列.STL中的优先队列通过仿函数来定义比较算法,此处我偷懒用了“<”运算符.关于使用仿函数的好处,我之后如果有时间深入学习S…
题目传送门 $Sol$ $50pts$:我们考虑$q==0$的情况,每次在所有的蚯蚓中找到一只长度最大的,这非常二叉堆.所以我们可以用一个优先队列,随便水一下就有50分.($NOIp$的分真这么好拿?) (理论得分60分,由于种种常数等的原因,实际会达到50分) #include<cstdio> #include<algorithm> #include<queue> using namespace std; int n,m,can,u,v,t; ]; priority_…
Python 二叉堆(binary heap) 二叉堆是一种特殊的堆,二叉堆是完全二叉树或者是近似完全二叉树.二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆. 当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆. 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆. 二叉堆的存储 二叉堆一般用数组来表示.如果根节点在数组中的位置是1,第n个位置的子节点分别在2n和 2n+1.因此,第1个位置的子节点在2和3,第2…
[摘要] timers模块部分源码和定时器原理 示例代码托管在:http://www.github.com/dashnowords/blogs 一.概述 Timer模块相关的逻辑较为复杂,不仅包含JavaScript层的实现,也包括C++编写的与底层libuv协作的代码,想要完整地看明白是比较困难的,本章仅以setTimeout这个API的实现机制为主线,讲述源码中的JavaScript相关的实现部分,这部分只需要一些数据结构的基本知识就可以理解. 二. 数据结构 setTimeout这个API…
目录 一.概述 二. 数据结构 2.1 链表 2.2 二叉堆 三. 从setTimeout理解Timer模块源码 3.1 timers.js中的定义 3.2 Timeout类定义 3.3 active(timeout) 3.4 定时器的处理执行逻辑 3.5 实例分析 四. 小结 示例代码托管在:http://www.github.com/dashnowords/blogs 博客园地址:<大史住在大前端>原创博文目录 华为云社区地址:[你要的前端打怪升级指南] 一.概述 Timer模块相关的逻辑…
Python实现二叉堆 二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树).二叉堆有两种:最大堆和最小堆.最大堆:父结点的键值总是大于或等于任何一个子节点的键值:最小堆:父结点的键值总是小于或等于任何一个子节点的键值. 优先队列的二叉堆实现 在前面的章节里我们学习了"先进先出"(FIFO)的数据结构:队列(Queue).队列有一种变体叫做"优先队列"(Priority Queue).优先队列的出队(Dequeue)操作和队列一样,都是从…
二叉堆可以看做一个近似的完全二叉树,所以一般用数组来组织. 二叉堆可以分为两种形式:最大堆和最小堆.最大堆顾名思义,它的每个结点的值不能超过其父结点的值,因此堆中最大元素存放在根结点中.最小堆的组织方式刚好与最大堆相反,它的最小元素存放在根结点中. 维护堆性质最重要的两个算法就是向上维护和向下维护.简而言之,例如最大堆中根结点的值小于其子结点的值,这个时候就要向下维护,把根结点逐级下降到适合的位置.显而易见地,向上维护就是子结点的值比其父结点大时(最大堆中),将结点逐级上升到合适的位置.这两个方…
优先队列(二叉堆)BuildHeap操作 \(BuildHeap(H)\)操作把\(N\)个关键字作为输入并把它们放入空堆中.显然,这可以使用\(N\)个相继的\(Insert\)操作来完成.由于每个\(Insert\)将花费\(O(1)\)平均时间以及\(O(\log N)\)的最坏情形时间,因此该算法的总的运行时间则是\(O(N)\)的平均时间而不是\(O(N \log N)\)最坏情形时间. 一般的算法是将\(N\)个关键字以任意顺序放入树中,保持 结构性 .此时,如果\(Percolat…
概念 队列有一个重要的变体,叫作优先级队列. 和队列一样,优先级队列从头部移除元素,不过元素的逻辑顺序是由优先级决定的. 优先级最高的元素在最前,优先级最低的元素在最后. 实现优先级队列的经典方法是使用叫作二叉堆(Binary Heap)的数据结构. 二叉堆的入队操作和出队操作均可达到O(log n). 其逻辑结构上像二叉树, 却是用非嵌套的列表来实现的 二叉堆有两个常见的变体: 最小堆(最小的元素一直在队首) 最大堆(最大的元素一直在队首) 二叉堆的操作 BinaryHeap()新建一个空的二…