首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
LDA线性分析推广到多分类
】的更多相关文章
LDA线性分析推广到多分类
感谢皮果提的文章: http://blog.csdn.net/itplus/article/details/12038441 http://blog.csdn.net/itplus/article 皮果提是个大牛! 本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料.初步看了看,觉得数学味挺浓,一时引起了很大的兴趣:再看看,就有整理一份资料的冲动了.网上查到…
PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质
机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点,如何用一个超平面(直线/平面的高维推广)对所有样本进行恰当的表达? 事实上,若存在这样的超平面,那么它大概应具有这样的性质: 最近重构性 : 样本点到这个超平面的距离都足够近: 最大可分性:样本点在这个超平面上的投影能尽可能分开. 一般的,将特征量从n维降到k维: 以最近重构性为目标,PCA的目标…
LDA线性判别分析原理及python应用(葡萄酒案例分析)
目录 线性判别分析(LDA)数据降维及案例实战 一.LDA是什么 二.计算散布矩阵 三.线性判别式及特征选择 四.样本数据降维投影 五.完整代码 结语 一.LDA是什么 LDA概念及与PCA区别 LDA线性判别分析(Linear Discriminant Analysis)也是一种特征提取.数据压缩技术.在模型训练时候进行LDA数据处理可以提高计算效率以及避免过拟合.它是一种有监督学习算法. 与PCA主成分分析(Principal Component Analysis)相比,LDA是有监督数据压…
LDA线性判别分析(转)
线性判别分析LDA详解 1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然这些在实际中不一定满足,但是LDA被证明是非常有效的降维方法,其线性模型对于噪音的鲁棒性效果比较好,不容易过拟合. 2 二分类问题 原理小结:对于二分类LDA问题,简单点来说,是将带有类别标签的高维样本投影到一个向量w(一维空间)上,使得在该向量上样本的投影值达到类内距…
LDA线性判别分析
LDA线性判别分析 给定训练集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能的近,异类样例点尽可能的远,对新样本进行分类的时候,将新样本同样的投影,再根据投影得到的位置进行判断,这个新样本的类别 LDA二维示意图.用'+'表示正类"-"表示负类,两个投影,实心三角形和圆表示投影中心 二分类: 给定数据集 :第类的样本集合 :第类的均值向量 :第类的协方差矩阵 将数据投影在直线上,则两类样本的中心点在直线上的投影分别为和 将所有的样本点投影到直线上之后,两类样本的协方差为 和…
数据降维-LDA线性降维
1.什么是LDA? LDA线性判别分析也是一种经典的降维方法,LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术.LDA的思想可以用一句话概括,就是“*投影后类内方差最小,类间方差最大*”. 什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大. 可能还是有点抽象,我们先看看最简单的情况.假设我们有两类数据分别为红色和蓝色,如…
LDA 线性判别分析
LDA, Linear Discriminant Analysis,线性判别分析.注意与LDA(Latent Dirichlet Allocation,主题生成模型)的区别. 1.引入 上文介绍的PCA方法对提取样本数据的主要变化信息非常有效,而忽略了次要变化的信息.在有些情况下,次要信息可能正是把不同类别区分开来的分布方向.简单来说,PCA方法寻找的是数据变化的主轴方向,而判别分析寻找的是用来有效分类的方向.二者侧重点不同.在图1.1可以看出变化最大的方向不一定能最好的区分不同类别. 图1.1…
R与数据分析旧笔记(六)多元线性分析 下
逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题:应该选择哪些变量? RSS(残差平方和)与R2(相关系数平方)选择法:遍历所有可能的组合,选出使RSS最小,R2最大的模型 AIC(Akaike information criterion)准则和BIC(Bayesian information criterion)准则 AIC=n×ln(RSSP…
数学建模:2.监督学习--分类分析- KNN最邻近分类算法
1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分类问题是用于将事物打上一个标签,通常结果为离散值.例如判断一副图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上. 本文主要讲基本的分类方法 ----- KNN最邻近分类算法 KNN最邻近分类算法 ,简称KNN,最简单的机器学习算法之一. 核心逻辑:在距离空间里,如果一个样本的最接近的K个邻…
各种排序算法的分析及java实现 分类: B10_计算机基础 2015-02-03 20:09 186人阅读 评论(0) 收藏
转载自:http://www.cnblogs.com/liuling/p/2013-7-24-01.html 另可参考:http://gengning938.blog.163.com/blog/static/128225381201141121326346/ 排序大的分类可以分为两种:内排序和外排序.在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序.下面讲的排序都是属于内排序. 内排序有可以分为以下几类: (1).插入排序:直接插入排序.二分法插入排序.希…