[ML] Gradient Boost】的更多相关文章

参考链接: 1. https://medium.com/@cwchang/gradient-boosting-%E7%B0%A1%E4%BB%8B-f3a578ae7205 2. https://zhuanlan.zhihu.com/p/38329631 3. StatQuest with Josh Starmer 4. GBDT退化为AdaBoost原理: https://blog.csdn.net/Liangjun_Feng/article/details/80672144 核心算法思想 B…
我们在很多Gradient Boost相关的论文及分析文章中都可以看到下面的公式: 但是,对这个公式的理解,我一直也是一知半解,最近,终于下决心对其进行了深入理解. 步骤1:可以看作优化目标的损失函数: 步骤2:代表需要学习1~M个模型: 步骤3:将前m-1个模型的组合F(X)代入损失函数L(y_i, F(X)),并对F(X)求导,求得梯度向量表达式:举例说明,如果损失函数是,则对F(X)求导,得到,当i从1取到N时,得到梯度方向的向量: 步骤4:得到梯度向量之后,我们需要的是梯度向量方向上的新…
原文:http://blog.csdn.net/aspirinvagrant/article/details/48415435 GBDT,全称Gradient Boosting Decision Tree,叫法比较多,如Treelink. GBRT(Gradient Boost Regression Tree).Tree Net.MART(Multiple Additive Regression Tree)等.GBDT是决策树中的回归树,决策树分为回归树和分类树,分类树的衡量标准是最大熵,而回归…
一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm.顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree).模型树(Model Tree),两者在建树的过程稍…
http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部的叫法,其学术上的名称是GBDT(Gradient Boosting Decision Tree,梯度提升决策树).GBDT是“模型组合+决策树”相关算法的两个基本形式中的一个,另外一个是随机森林(Random Forest),相较于GBDT要简单一些. 1.1    决策树 应用最广的分类算法之一…
由于最近要经常用到XGBOOST的包,不免对相关的GBDT的原理又重新学习了一遍, 发现其中在考虑损失函数的时候,是以对数log进行度量的,囿于误差平方和函数的印象 那么为什么是对数呢?可能是下面的原因: [通俗的解释] 对数损失是用于最大似然估计的.一组参数在一堆数据下的似然值,等于每一条数据的概率之积.而损失函数一般是每条数据的损失之和,为了把积变为和,就取了对数.再加个负号是为了让最大似然值和最小损失对应起来. [专业的解释] 链接:http://www.zhihu.com/questio…
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters) m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters theta = theta - alpha * X' * (X * theta - y) / m; iter = iter +1; J…
原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对:@酒酒Angie(drmr_anki@qq.com) && 寒小阳(hanxiaoyang.ml@gmail.com) 时间:2016年9月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52663170 1.前言 如果一直以来你…
Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple Additive Regression Tree(MART),阿里貌似叫treelink. 首先学习GBDT要有决策树的先验知识. Gradient Boosting Decision Tree,和随机森林(random forest)算法一样,也是通过组合弱学习器来形成一个强学习器.GBDT的发明…
How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost 0 0 0 0   Gradient boosting is one of the most powerful techniques for applied machine learning and as such is quickly becoming one of the most popula…
GBDT之前实习的时候就听说应用很广,现在终于有机会系统的了解一下. 首先对比上节课讲的Random Forest模型,引出AdaBoost-DTree(D) AdaBoost-DTree可以类比AdaBoost-Stump模型,就可以直观理解了 1)每轮都给调整sample的权重 2)获得gt(D,ut) 3)计算gt的投票力度alphat 最后返回一系列gt的线性组合. weighted error这个比较难搞,有没有不用动原来的模型,通过输入数据上做文章就可以达到同样的目的呢? 回想bag…
热身:分类问题若干策略 SVM, LR, Decision Tree的比较 同样是分类:SVM.LR.决策树,三者之间有什么优劣势呢? 答:Are decision tree algorithms linear or nonlinear: nonlinear! 更接近 "神经网络". 一.与"判别式分类"的比较 Ref:逻辑回归,决策树,支持向量机 选择方案 逻辑回归 LR LR的优势: 对观测样本的概率值输出 实现简单高效 多重共线性的问题可以通过L2正则化来应对…
  1 booststraping:意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法. 其核心思想和基本步骤如下: (1)采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样. (2)根据抽出的样本计算统计量T. (3)重复上述N次(一般大于1000),得到统计量T. (4)计算上述N个统计量T的样本方差,得到统计量的方差. 应该说是Bootstrap是现代统计学较为流行的方法,小样本效果好,…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman. 研究GBDT一定要看看Friedman的pa…
天天跟数据打交道的研究人员,都有一个成为Kaggle顶级大师(Grandmaster)的梦想. 但每年的Kaggle参赛团队众多,通常一个项目都有数千人至上万人报名,如何在其中脱颖而出? 最近,自动化数据准备及协作平台Dataland的联合创始人Lavanya Shukla,在博客上分享了她在Kaggle竞赛中最终成为0.3%的获奖经验. 小姐姐在推特中表示,这份攻略里全都是干货,网友纷纷为其点赞.有网友表示,这份攻略非常棒,才知道脊回归如此强大! *先放上原文地址:* *https://www…
Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http://blog.csdn.net/v_july_v/article/details/7237351#t40: 2014年10月18日,北京10月机器学习班开班,全部PPT 的下载地址见:http://blog.csdn.net/v_july_v/article/details/7237351#t63: 201…
0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来处理.     常见的词汇:机器学习.数据建模.关联分析.算法优化等等,而这些种种又都是基于规律的深度开发(也难怪道德经的首篇就提出道可道非常道,名可名非常名的说法),不管是线性还是非线性,总之存在关联关系,而我们最好理解的就是线性关系,简单的用个函数就能解决.比如我们生活中应用的比较的归纳总结,其…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com.也可以加我的微博: @leftnoteasy 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝…
前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 美国金融银行业的大数据算法:随机森林模型+综合模型 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大大的减少单决策树带来的毛病,有…
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑…
https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/?spm=5176.100239.blogcont61037.12.0MhmIg https://yq.aliyun.com/articles/61037?spm=5176.100239.bloglist.110.rlSDN9 We are probably living in the most defining period of hu…
前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大 大的减少单决策树带来的毛病,有点类似于三个臭皮匠等于一个诸葛亮的做法,虽然这几…
机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over-fitting,虽然有…
前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大大的减少单决策树带来的毛病,有点类似于三个臭皮匠等于一个诸葛亮的做法,虽然这几百棵…
1.优化模型的两种策略: 1)基于残差的方法 残差其实就是真实值和预测值之间的差值,在学习的过程中,首先学习一颗回归树,然后将“真实值-预测值”得到残差,再把残差作为一个学习目标,学习下一棵回归树,依次类推,直到残差小于某个接近0的阀值或回归树数目达到某一阀值.其核心思想是每轮通过拟合残差来降低损失函数. 总的来说,第一棵树是正常的,之后所有的树的决策全是由残差来决定. 2)使用梯度下降算法减小损失函数. 对于一般损失函数,为了使其取得最小值,通过梯度下降算法,每次朝着损失函数的负梯度方向逐步移…
Adaboost.RandomFrest.GBRT都是基于决策树的组合算法 Adaboost是通过迭代地学习每一个基分类器,每次迭代中,把上一次错分类的数据权值增大,正确分类的数据权值减小,然后将基分类器的线性组合作为一个强分类器,同时给分类误差率较小的基本分类器以大的权值,给分类误差率较大的基分类器以小的权重值. Adaboost使用的是自适应的方法,其中概率分布式变化的,关注的是难分类的样本. 随机森林RandomForest算法通过随机的方式建立一个森林,森林里的树相互独立.在新样本进来时…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记来源于CDA DSC,L2-R语言课程所学进行的总结. 一.介绍:梯度提升树(Gradient Boost Decision Tree) Boosting算法和树模型的结合.按次序建立多棵树,每棵树都是为了减少上一次的残差(residual),每个新的模型的建立都是为了使之前模型的残差往梯度方向减少.最后将当前得到的决策树与之前的那些决策…