title: [概率论]4-6:协方差和相关性(Covariance and Correlation) categories: - Mathematic - Probability keywords: - Covariance - Correlation - Properties of Covariance and Correlation toc: true date: 2018-03-26 10:44:07 Abstract: 本文介绍协方差和相关性的基础知识,以及部分性质 Keywords:…
如文章"Genome-wide Complex Trait Analysis(GCTA)-全基因组复杂性状分析"中介绍的GCTA,是一款基于全基因组关联分析发展的分析工具,除了计算不同性状/表型间(traits)的遗传相关性外,还可以计算亲缘关系.近交系数--,下面简单介绍如何利用GCTA计算不同性状/表型的遗传相关性. 一,在Linux上安装GCTA工具: wget -r -np -pk -nH -P ./to/your/path/way/gcta http://cnsgenomic…
概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计理论分析AI系统行为.概率论提出不确定声明,在不确定性存在情况下推理.信息论量化概率分布不确定性总量.Jaynes(2003).机器学习经常处理不确定量,有时处理随机(非确定性)量.20世纪80年代,研究人员对概率论量化不确定性提出信服论据.Pearl(1998). 不确定性来源.被建模系统内存的随…
摘录wiki如下(红色字体是特别标注的部分): http://zh.wikipedia.org/wiki/%E5%8D%8F%E6%96%B9%E5%B7%AE 协方差 协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差.而方差是协方差的一种特殊情况,即当两个变量是相同的情况. 期望值分别为与的两个实数随机变量X 与Y 之间的协方差定义为: , 其中E是期望值.它也可以表示为: , 直观上来看,协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同. 如果两…
目录 person correlation coefficient(皮尔森相关性系数-r) spearman correlation coefficient(斯皮尔曼相关性系数-p) kendall correlation coefficient(肯德尔相关性系数-k) R语言计算correlation 在文献以及各种报告中,我们可以看到描述数据之间的相关性:pearson correlation,spearman correlation,kendall correlation.它们分别是什么呢…
1. 两件事伴随发生,不代表他们之间有因果关系 - 从一些荒诞相关性案例说起 在日常生活和数据分析中,我们可以得到大量相关性的结论,例如: 输入X变量,有98%置信度得到Y变量 只要努力,就能成功 只要到了下班时间出公司大门,天就一定黑了 深圳交警表示,天秤.处女.天蝎座的人更喜欢违章 肿瘤发生率随着最近二十年手机的推广逐年上升,证明了手机辐射致癌 屁股大容易生儿子 世界上不吃猪肉的人群中,人自爆的概率最大 据观察统计,消防车数量越多的火灾中,伤亡人数越多 工业革命以来,女人穿的裙子越来越短,全…
参考文献及推荐阅读 维基百科,http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm: 机器学习中的相似性度量,http://www.cnblogs.com/heaad/archive/2011/03/08/1977733.html: 杰卡德相似系数及距离,http://www.cnblogs.com/heaad/archive/2011/03/08/1977733.html: 统计学习方法,李航: 概率论与数理统计 第四版 盛骤等编,…
wiki百科:http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91%E5%AD%A6%E4%B9%A0 opencv学习笔记--二杈决策树:http://blog.csdn.net/homechao/article/details/9061921 (1):从K近邻算法.距离度量谈到KD树.SIFT+BBF算法:http://blog.csdn.net/v_july_v/article/details/8203674 前言 前两日,在微博…
官方文档 1. 安装Pandas windos下cmd:pip install pandas 导入pandas包:import pandas as pd 2. Series对象 带索引的一维数组 创建: s = pd.Series([12,-4,7,9]) print (s) 0 12 1 -4 2 7 3 9 dtype: int64 s = pd.Series([12,-4,7,9], index = ['a', 'b', 'c', 'd']) print (s) a 12 b -4 c 7…
title: 本站目录 categories: Other sticky: 10 toc: true keywords: 机器学习基础 深度学习基础 人工智能数学知识 机器学习入门 date: 9999-12-31 23:59:59 本站包含作者原创的关于人工智能的理论,算法等博客,目前包括:强化学习,深度学习,机器学习,线性代数,概率论,数理统计,Python,爬虫等在目前人工智能领域需要用到的基础知识,欢迎大家订阅关注. 本站目录 首先插入一下我的整体研究思路,也是人工智能的技能树,我们要顺…
学习DIP第55天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro 更多图像处理机器学习内容请访问最新网站www.tony4ai.com #开篇废话 废话开始,今天介绍OTSU算法,本算法比前面给出的算法更能够给出数学上的最佳阈值,不需要任何输入附加参数.与同样不需要输入附加参数的迭代均值和均值阈值来比较…
皮尔逊相关系数 斯皮尔曼等级相关(Spearman Rank Correlation) http://wiki.mbalib.com/wiki/斯皮尔曼等级相关 从表中的数字可以看出,工人的考试成绩愈高其产量也愈高,二者之间的联系程度是很一致的,但是相关系数r=0.676 并不算太高,这是由于它们之间的关系并不是线性的,如果分别按考试成绩和产量高低变换成等级(见上表第3.4列),则可以计算它们之间的等级相关系数为1. Kendall tau rank correlation coefficien…
参考链接:http://pinkyjie.com/2011/02/24/covariance-pca/ PCA的本质其实就是对角化协方差矩阵. PCA就是将高维的数据通过线性变换投影到低维空间上去,但这个投影可不是随便投投,要遵循一个指导思想,那就是:找出最能够代表原始数据的投影方法. "最能代表原始数据"希望降维后的数据不能失真,也就是说,被PCA降掉的那些维度只能是那些噪声或是冗余的数据. 1:冗余,就是去除线性相关的向量(纬度),因为可以被其他向量代表,这部分信息量是多余的. 2…
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵. 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来.网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧. 用matlab计算这个例子 z=[1,2;3,6;4,2;5,2] cov(z) ans = 2.9167 -0.3333 -0.3333 4.0000 可以看出,matlab计算协方差过程…
上次那篇文章在理论层次介绍了下协方差矩阵,没准很多人觉得这东西用处不大,其实协方差矩阵在好多学科里都有很重要的作用,比如多维的正态分布,再比如今天我们今天的主角——主成分分析(Principal Component Analysis,简称PCA).结合PCA相信能对协方差矩阵有个更深入的认识. PCA的缘起 PCA大概是198x年提出来的吧,简单的说,它是一种通用的降维工具.在我们处理高维数据的时候,为了能降低后续计算的复杂度,在“预处理”阶段通常要先对原始数据进行降维,而PCA就是干这个事的.…
   Linear Regression 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本人的一份学习总结,也希望和朋友们进行交流学习. 该书是The Elements of Statistical Learning 的R语言简明版,包含了对算法的简明介绍以及其R实现,最让我感兴趣的是算法的R语言实现. [转载时请注明来源]:http://www.cnblogs.com/runner-l…
基础知识(开胃菜) Python 1.类继承 有如下的一段代码: class A(object): def show(self): print 'base show' class B(A): def show(self): print 'derived show' obj = B() obj.show() 如何调用类A的show方法了. 方法如下: obj.__class__ = Aobj.show() class 方法指向了类对象,只用给他赋值类型A,然后调用方法show,但是用完了记得修改回…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
org.apache.spark.sql.functions是一个Object,提供了约两百多个函数. 大部分函数与Hive的差不多. 除UDF函数,均可在spark-sql中直接使用. 经过import org.apache.spark.sql.functions._ ,也可以用于Dataframe,Dataset. version 2.3.0 大部分支持Column的函数也支持String类型的列名.这些函数的返回类型基本都是Column. 函数很多,都在下面了. 聚合函数 approx_c…
基于pandas python的美团某商家的评论销售数据分析 第一篇 数据初步的统计 本文是该可视化系列的第二篇 第三篇 数据中的评论数据用于自然语言处理 导入相关库 from pyecharts import Bar,Pie import pandas as pd import numpy as np import matplotlib.pyplot as plt import time 数据清洗与简单统计 评论数据,其中包括一下几个字段 是否匿名,均价,评价(以去掉,后续会做一些关于这些评论…
PCA的一些基本资料 最近因为最人脸表情识别,提取的gabor特征太多了,所以需要用PCA进行对提取的特征进行降维. 本来最早的时候我没有打算对提取的gabor特征进行降维,但是如果一个图像时64*64,那么使用五个尺度八个方向的gabor滤波器进行滤波,这样提取的特征足足有64*64*5*8这么多,如果图像稍微大一点,比如128*128的图像,那么直接提取的特征就会几十万,所以不降维的话直接用SVM训练分类器是非常困难的. 所以在这段时间我就学习了一下PCA降维的基本原理和使用方法,网上给出的…
相对与网上很多人分享的有关PCA的经历,我第一次接触PCA却不是从人脸表情识别开始的,但我所在的实验室方向之一是人脸的研究,最后也会回到这个方向上来吧. PCA(principal components analysis)是一种非常有用的统计技术,它已经应用于人脸识别和图像压缩领域中,并且是高维数据计算模型的常用技术.简单说是把高维数据将成低维数据,比如100000x100000的矩阵降成100000x100的. 从例子中也看得出在数学模型中直观看到的是对矩阵进行的各种各样的变形最终达到我们所需…
scikit-learn API 这是scikit-learn的类和函数参考.有关详细信息,请参阅完整的用户指南,因为类和功能原始规格可能不足以提供有关其用途的完整指南. sklearn.base:基类和实用函数 所有估算器的基类. 基类 base.BaseEstimator:scikit-learn中所有估算器的基类 base.BiclusterMixin:Mixin类适用于scikit-learn中的所有bicluster估算器 base.ClassifierMixin:Mixin类适用于s…
测试数据: id,name,age,comment,date 1,lyy,28,"aaa bbb",20180102020325 scala> var data = spark.read.format("csv").option("header",true).load("file:///E:/liyanyan/data/test.csv") scala> data.printSchema root |-- id:…
1.应用pca的前提 应用pca的前提是,连续信号具有相关性.相关性是什么,是冗余.就是要利用pca去除冗余. 2.pca的定义 pca是一种去除随机变量间相关性的线性变换.是一种常用的多元数据分析方法.pca将互相关的输入数据转换成统计上不相干的主成分(或者特征),所得到的主成份通常是按照方差大小进行降序排列的. reference :基于CCA的fMRI时空模型数据处理方法的研究,肖柯,硕士论文. ———————————————————下面来参考一下代码———————————————————…
为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重. 其中包括总和,均值,中位数,方差,协方差,相关性等. 下来学习如何在DataFrame对象上应用上提及的每种方法. .rolling()函数 这个函数可以应用于一系列数据.指定window=n参数并在其上应用适当的统计函数. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10, 4), index = pd.da…
API参考 这是scikit学习的类和函数参考.有关详细信息,请参阅完整的用户指南,因为类和功能原始规格可能不足以给出其使用的完整指导. sklearn.base:基类和效用函数 所有估计器的基类. 基类 base.BaseEstimator scikit学习中所有估计的基础类 base.ClassifierMixin 所有分类器的混合类在scikit学习. base.ClusterMixin 所有群集估计器的混合类在scikit学习中. base.RegressorMixin 所有回归估计的混…
第一章 图像领域,第\(i\)类图片提取到的特征: \[ feature_i=\sum_jw_{i,j}x_j+b_i \] 其中,\(j\)表示一张图片的第\(j\)个像素,\(b_i\)是偏置值(bias),顾名思义就是这个数据本身的一些倾向,比如如果训练获得的参数\(w\)大部分数字是0,那么0特征对应的bias就会很大. 对于多分类问题,通常使用交叉熵作为损失函数(loss function),通常可以用它来判断模型对真实概率分布估计的准确程度, \[ H_{y'}(y)=-\sum_i…
目录 PCA 1. PCA最大可分性的思想 2. 基变换(线性变换) 3. 方差 4. 协方差 5. 协方差矩阵 6. 协方差矩阵对角化 7. PCA算法流程 8. PCA算法总结 PCA PCA 就是找出数据最主要的方面,用数据里最主要的方面来代替原始数据. PCA 是最重要的降维方法之一,在数据压缩.消除冗余和数据噪音消除等领域都有广泛的应用. 1. PCA最大可分性的思想 ​ 最大可分性: 样本点在超平面上的投影尽可能的分开 2. 基变换(线性变换) ​ 欲获得原始数据新的表示空间,最简单…
为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重. 其中包括总和,均值,中位数,方差,协方差,相关性等.本章讨论的是在DataFrame对象上应用这些方法. .rolling()函数 这个函数可以应用于一系列数据.指定window=n参数,并应用适当的统计函数. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10, 4),index = pd.date_range…