TensorFlow知识总结】的更多相关文章

学习资料: 英文官方网站 Tensorflow 将要写的博客目录: 1.使用Spring AOP对异常进行统一处理 2.动态代理模式理解  aop中的动态代理模式 3.工厂模式三种的理解.loggerFactory.getclass(); 4.流关闭在JDK1.7中使用 5.API auth授权原理整理…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:AI小昕 在之前的Tensorflow系列文章中,我们教大家学习了Tensorflow的安装.Tensorflow的语法.基本操作.CNN的一些原理和项目实战等.本篇文章将为大家总结Tensorflow纯干货学习资源,非常适合新手学习,建议大家收藏.想要学习更多的Tensorflow知识,欢迎点击上方蓝字,关注我们的微信公众号. 一 .Tensorflow教…
tensorflow笔记(一)之基础知识 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7399701.html 前言 这篇notebook将一步步构建一个tensorflow的线性回归的例子,并讲述其中的一些基础知识.我会把notebook文件放在结尾的百度云链接. 首先第一步,要安装tensorflow,这个网上的教程很多,我安装的版本是ubuntu下1.2.1的tensorflow,推荐用pip(一步就好)这里附上一个…
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 softmax   这里用到的tf基本知识 tf.tensor-张量,其实就是矩阵.官方说法是原料 tf.Varible-变量,用来记录数据,参数.其实也是个矩阵.不过要初始化后才有具体的值 tf.Session()-会话,就是个模型,我们可以在里面添加数据流动方向,运算节点 香农熵 香农熵是计算信息…
引言 从本周,我将开始tensorflow的学习.手头只有一本<tensorflow:实战Google深度学习框架>,这本书对于tensorflow的入门有一定帮助.tensorflow中文社区中的翻译的谷歌官方教程十分详细,是自学tensorflow的好帮手,当然如果是英文熟手可以直接看谷歌官方给出的原版教程(博主英语是靠谷歌翻译和百度翻译救活的). 本篇博客主要讲述机器学习的发展过程,以及BP神经网络的主要内容.不涉及tensorflow的编程.具体BP神经网络tensorflow的实现将…
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个   b为4*2+2 接下来是损失函数 主流的有均分误差,交叉熵,以及自定义 这里贴上课程里面的代码 # -*- coding: utf-8 -*- """ Created on Sat May 26 18:42:08 2018 @author: Administrator "&qu…
基本知识 使用 TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使用 tensor 表示数据. 通过 变量 (Variable) 维护状态. 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据. TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op (operati…
参考资料: 深度学习笔记目录 向机器智能的TensorFlow实践 TensorFlow机器学习实战指南 Nick的博客 TensorFlow 采用数据流图进行数值计算.节点代表计算图中的数学操作,计算图的边表示多维数组,即张量. 在 TensorFlow 官网上将其定义为基于数据流图的数值计算库,TensorFlow 还提供了一个可使得用户用数学方法从零开始定义模型的函数和类的广泛套件.这使得具有一定技术背景的用户可迅速而直观地创建自定义.具有较高灵活性的模型. TensorFlow 的计算模…
1.TensorFlow 系统架构: 分为设备层和网络层.数据操作层.图计算层.API 层.应用层.其中设备层和网络层.数据操作层.图计算层是 TensorFlow 的核心层. 2.TensorFlow 设计理念: (1)将图的定义和图的运行完全分开.TensorFlow 完全采用符号式编程. 符号式计算一般是先定义各种变量,然后建立一个数据流图,在数据流图中规定各个变量之间的计算关系,最后需要对数据流图进行编译,此时的数据流图还是一个空壳,里面没有任何实际数据,只有把需要的输入放进去后,才能在…