在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元.那上面的式子变形之后得到a-1≡ap-2(mod p),因此可以通过快速幂求出逆元. 我们先来证明一下费马小定理: 费马小定理证明: 一.准备知识 引理1:剩余系定理2 若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m) 证明:ac≡b…