3.1 configuration 3.2 寻找最优网络参数 代码示例: # 1.Step 1 model = Sequential() model.add(Dense(input_dim=28*28, output_dim=500)) # Dense是全连接 model.add(Activation('sigmoid')) model.add(Dense(output_dim=500)) model.add(Activation('sigmoid')) model.add(Dense(outp…
1. Keras Demo2 前节的Keras Demo代码: import numpy as np from keras.models import Sequential from keras.layers.core import Dense,Dropout,Activation from keras.optimizers import SGD,Adam from keras.utils import np_utils from keras.datasets import mnist def…
Regression 回归 应用领域包括:Stock Market Forecast, Self-driving car, Recommondation,... Step 1: Model 对于宝可梦的CP值预测问题,假设为一个最简单的线性模型 y = b + \(\sum w_i x_i\) \(x_i\): an attribute of input x(feature) \(w_i\): weight, b: bias Step 2: Goodness of Function 定义一个Lo…
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0.9713.今天我们完成day40-42的课程,实现猫.狗的识别. 本文数据集下载地址 https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.…
 先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: sklearn的机器学习使用流程: from sklearn.模型簇 import 模型名 from sklearn.metrics import 评价指标 ''' 数据预处理及训练测试集分离提取''' myModel = 模型名称() # 对象初始化 myModel.fit(训练集x , 训练集y) #…
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷积层.Pooling池化层等非常丰富有趣的网络结构. 我们可以通过将层的列表传递给Sequential的构造函数,来创建一个Sequential模型. from keras.models import Sequential from keras.layers import Dense, Activa…
该博客将介绍机器学习课程by李宏毅的前两个章节:概述和回归. 视屏链接1-Introduction 视屏链接2-Regression 该课程将要介绍的内容如下所示: 从最左上角开始看: Regression(回归):输出的目标是一个数值.如预测明天的PM2.5数值. 接下来是Classification(分类):该任务的目标是将数据归为某一类,如进行猫狗分类. 在分类任务中,将涉及线性和非线性的模型.其中,非线性的模型包含了Deep-Learning,SVM,决策树,K-NN等等. 结构化学习相…
Convolutional Neural Network CNN 卷积神经网络 1. 为什么要用CNN? CNN一般都是用来做图像识别的,当然其他的神经网络也可以做,也就是输入一张图的像素数组(pixel vector),最后输出n个分类(dimension). 但是为什么不用Fully Connected Network呢,主要原因还是因为前后各层涉及到的参数太多了. 所以CNN主要就是简化神经网络的架构,使其比一般的DNN都要简单.这是第一点原因. 网络中的每一个神经元都可以看做是一个Cla…
神经网络的表现 在Training Set上表现不好 ----> 可能陷入局部最优 在Testing Set上表现不好 -----> Overfitting 过拟合 虽然在机器学习中,很容易通过SVM等方法在Training Set上得出好的结果,但DL不是,所以得先看Training Set上的表现. 要注意方法适用的阶段: 比如:dropout方法只适合于:在Training Data上表现好,在Testing Data上表现不好的. 如果在Training Data上就表现不好了,那么这…
Classification: Probabilistic Generative Model 分类:概率生成模型 如果说对于分类问题用回归的方法硬解,也就是说,将其连续化.比如 \(Class 1\) 对应的目标输出为 1, \(Class 2\) 对应 -1. 则在测试集上,结果更接近1的归为\(Class 1\),反之归为\(Class 2\). 这样做存在的问题:如果有Error数据的干扰,会影响分类的结果. 还有就是,如果是多分类问题,则在各类之间增加了线性关系,比如认为 \(Class…