numpy 中 shape_base提供的tile方法】的更多相关文章

tile函数 来自于numpy.lib.shape_base 功能:重复某个数组. 比如说tile(A, n), 功能是将数组A重复n次,构成一个新的数组(行数只有1个) 比如说tile(A, n, 1), 功能是将数组A重复n次,构成一个新的数组(n 行,每行中只有1个) # 先引入numpy下的所有方法 from numpy import * # 源码中的示例如下 >>> a = np.array([0, 1, 2]) >>> np.tile(a, 2) array…
作者:代码律动链接:https://zhuanlan.zhihu.com/p/36303821来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 挑战 1:引入 numpy 并查看 numpy 的版本. 要求:这是第一步,以后我们使用 numpy 时都将用别名 np. # 答案 import numpy as np print(np.__version__) #> 1.13.3 挑战 2:创建数组 要求:创建一维数组,内容为从 0 到 9. # 输入数组 arr =…
tile函数位于python模块numpy.lib.shape_base中,他的功能是重复某个数组. 函数的形式是tile(A,reps) 函数参数说明中提到A和reps都是array_like的,什么是array_like的parameter呢?在网上查了一下,始终搞不明白,便把熟悉的python数据类型都试了一下,得出以下结论. A的类型众多,几乎所有类型都可以:array, list, tuple, dict, matrix以及基本数据类型int, string, float以及bool类…
原文地址 NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是一个一维数组,而这个一维数组中每个元素又是一个一维数组.所以这个一维数组就是NumPy中的轴(axes),而轴的数量——秩,就是数组的维数. Numpy库中的矩阵模块为ndarray对象,有很多属性:T,data, dtype,flags,flat,imag,real,size, itemsize,…
在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复某个数组.比如tile(A,n),功能是将数组A重复n次,构成一个新的数组 print(tile([0,0],1)) [0 0] print(tile([0,0],2)) [0 0 0 0] print(tile([0, 0], 4)) [0 0 0 0 0 0 0 0] print(tile([0…
from NumPy import * 函数形式: tile(A,rep) 功能:重复A的各个维度 参数类型: - A: Array类的都可以 - rep:A沿着各个维度重复的次数 这个英文单词的本意是:贴瓷砖,还挺形象的. 举例: tile([17,29],2),如果rep参数是一个整数,则表示重复A中的元素rep次,即行数(即维度)只有1维,所以2的意思是在“列”这个维度上重复2次 输出[17,29,17,29] tile([29,17],(3,5)) 此时的(3,5)和[3,5]是相同的效…
1.概述 作用:提供了在PL/SQL块中执行DDL语句的方法,并且也提供了一些DDL的特殊管理方法. 2.包的组成 1).alter_compile说明:用于重新编译过程.函数和包语法:dbms_ddl.alter_compile(type varchar2,schema varchar2,name varchar2);其中type指定对象类型(procedure,function,package,trigger),schema指定对象所在方案,name指定对象名例子:dbms_ddl.alte…
https://www.cnblogs.com/td15980891505/p/6198036.html numpy.random模块中提供啦大量的随机数相关的函数. 1 numpy中产生随机数的方法 1)rand() 产生[0,1]的浮点随机数,括号里面的参数可以指定产生数组的形状 2)randn() 产生标准正太分布随机数,参数含义与random相同 3)randint() 产生指定范围的随机数,最后一个参数是元祖,他确定数组的形状 1 2 3 4 5 6 7 8 9 10 11 12 im…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
1 RandomState 的应用场景概述 在训练神经网络时,苦于没有数据,此时numpy为我们提供了 “生产” 数据集的一种方式. 例如在搭建神经网络(一)中的 4.3 准备数据集 章节中就是采用np.random.mtrand.RandomState “生产” 数据的. 常用的方式如下 import numpy as np # 设置seed值,生成ndarray对象 SEED = 23455 # 基于seed产生随机数 rdm = np.random.mtrand.RandomState(S…