1. 优化目标 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法A还是学习算法B,而更重要的是,应用这些算法时,所创建的大量数据在应用这些算法时,表现情况通常依赖于你的水平.比如:你为学习算法所设计的 特征量的选择,以及如何选择正则化参数,诸如此类的事.还有一个更加强大的算法广泛的应用于工业界和学术界,它被称为支持向量机(Support Vector Machine).与逻辑回归和神经网络相比,支持向量机,或者简称SVM,在学习复杂的非线性方程时提供了一种更为清晰…
支持向量机(Support Vector Machines) 优化目标(Optimization Objective) 到目前为止,你已经见过一系列不同的学习算法.在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用算法 A 还是算法 B ,其实一个算法的表现通常依赖于你的水平.例如:你为算法所设计或选择的特征.正则化参数的选取.学习曲线.误差分析.算法评估,等等诸如此类的细节决定了一个算法的性能. 在机器学习领域中,还有一个更加强大的监督学习算法被广泛地应用于工业界和学术界…
12.1  优化目标 12.2  大边界的直观理解 12.3  数学背后的大边界分类(可选) 12.4  核函数 1 12.5  核函数 2 12.6  使用支持向量机 12.1  优化目标 到目前为止,你已经见过一系列不同的学习算法.在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法 A 还是学习算法 B,而更重要的是, 应用这些算法时,所创建的大量数据在应用这些算法时,表现情况通常依赖于你的水平.比 如:你为学习算法所设计的特征量的选择,以及如何选择正则化参数,…
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 a cleverly-chosen optimization objective优化目标, one of the most widely used learning algorithms today. 第一节 向量的内积(SVM的基本数学知识) Support Vector Machines 支持向…
12.1 优化目标 参考视频: 12 - 1 - Optimization Objective (15 min).mkv 到目前为止,你已经见过一系列不同的学习算法.在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法A还是学习算法B,而更重要的是,应用这些算法时,所创建的大量数据在应用这些算法时,表现情况通常依赖于你的水平.比如:你为学习算法所设计的特征量的选择,以及如何选择正则化参数,诸如此类的事.还有一个更加强大的算法广泛的应用于工业界和学术界,它被称为支持向量…
11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优.关于SMO最好的资料就是他本人写的<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector Machines>. 首先回到前面一直悬而未解的问题,对…
在本练习中,先介绍了SVM的一些基本知识,再使用SVM(支持向量机 )实现一个垃圾邮件分类器. 在开始之前,先简单介绍一下SVM ①从逻辑回归的 cost function 到SVM 的 cost function 逻辑回归的假设函数如下: hθ(x)取值范围为[0,1],约定hθ(x)>=0.5,也即θT·x  >=0时,y=1:比如hθ(x)=0.6,此时表示有60%的概率相信 y 等于1 显然,要想让y取值为1,hθ(x)越大越好,因为hθ(x)越大,y 取值为1的概率也就越大,也即:更…
与逻辑回归和神经网络相比,支持向量机或者简称 SVM,更为强大. 人们有时将支持向量机看作是大间距分类器. 这是我的支持向量机模型代价函数 这样将得到一个更好的决策边界 理解支持向量机模型的做法,即努力将正样本和负用最大间距分开. 实际上应用支持向量机的时候, 当…
SVM被许多人认为是最强大的“黑箱”学习算法,并通过提出一个巧妙选择的优化目标,今天最广泛使用的学习算法之一. Optimization Objective 根据Logistic Regression,有如下表述: 为了达到尽量好的分类效果,我们需要theta‘*x >> 0 or theta‘*x << 0,根据上面的函数图象,这时候的h(x)->1 or h(x)->0,可以看出这时我们的分类效果是最具说服力的. 根据逻辑回归的Cost Function我们可以得到…
7 核函数(Kernels) 最初在“线性回归”中提出的问题,特征是房子的面积x,结果y是房子的价格.假设从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点.那么首先需要将特征x扩展到三维,然后寻找特征和结果之间的模型.将这种特征变换称作特征映射(feature mapping).映射函数称作,在这个例子中 我们希望将得到的特征映射后的特征应用于SVM分类,而不是最初的特征.这样,需要将前面公式中的内积从,映射到. 至于为什么需要映射后的特征而不是最初的特征来…