可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ knn模型的三要素:距离度量(如何计算样本之间的距离).k值的选择(选择要判断的目标周围的几个样本去判断类别).分类决策规则(如何决定目标的类别) 图中所谓没有明显的训练过程就是给定目标样本,只需要直接计算其周围K个样本的类别,通过分类决策规则判断出来目标样本的类别就可以,不需要预先训练一个判别模型.…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
简介 K近邻法(knn)是一种基本的分类与回归方法.k-means是一种简单而有效的聚类方法.虽然两者用途不同.解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二者的异同. 算法描述 knn 算法思路:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. k近邻模型的三个基本要素: k值的选择:k值的选择会对结果产生重大影响.较小的k值可以减少近似误差,但是会增加估计误差:较大的k值可以减小估计误差,但…
import numpy as np from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances import matplotlib.pyplot as plt import matplotlib as mpl from cycler import cycler from .tools import discret…
聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性,同一性(与自身距离为0),对称性,直递性(三角不等式).包括欧式距离(二范数),曼哈顿距离(一范数)等等. 1.KNN k近邻(KNN)是一种基本分类与回归方法. 其思路如下:给一个训练数据集和一个新的实例,在训练数据集中找出与这个新实例最近的k  个训练实例,然后统计最近的k  个训练实例中所属类…
这两种算法之间的根本区别是,Kmeans本质上是无监督学习而KNN是监督学习.Kmeans是聚类算法,KNN是分类(或回归)算法. Kmeans算法把一个数据集分割成簇,使得形成的簇是同构的,每个簇里的点相互靠近.该算法试图维持这些簇之间有足够的可分离性.由于无监督的性质,这些簇没有任何标签. KNN算法尝试基于其K(可以是任何数目)个周围邻居来对未标记的观察进行分类.它也被称为懒惰学习法,因为它涉及最小的模型训练.因此,它不用训练数据对未看见的数据集进行泛化.…
KNN(K-Nearest Neighbor)介绍 Wikipedia上的 KNN词条 中有一个比较经典的图如下: KNN的算法过程是是这样的: 从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据. 如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形. 如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿…
KNN和K-Means的区别 KNN K-Means 1.KNN是分类算法 2.监督学习 3.喂给它的数据集是带label的数据,已经是完全正确的数据 1.K-Means是聚类算法 2.非监督学习 3.喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程 K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,…
一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一个大类.不停的合并,直到合成了一个类.其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等.比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离. 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerat…
本文主要简述聚类算法族.聚类算法与前面文章的算法不同,它们属于非监督学习. 1.K-means聚类 记k个簇中心,为\(\mu_{1}\),\(\mu_{2}\),...,\(\mu_{k}\),每个簇的样本数为\(N_{i}\) 假设每个簇中的数据都满足分布\(N(\mu_{i},\sigma)\),即方差相同,均值不同的GMM. 则每一个样本点的分布函数为:\[\phi_{i}=\dfrac{1}{\sqrt{2\pi\sigma^2}}exp(-\dfrac{({x_{i}-\mu})^2…