bzoj 4445 小凸想跑步 - 半平面交】的更多相关文章

题目传送门 vjudge的快速通道 bzoj的快速通道 题目大意 问在一个凸多边形内找一个点,连接这个点和所有顶点,使得与0号顶点,1号顶点构成的三角形是最小的概率. 假设点的位置是$(x, y)$,那么可以用叉积来计算三角形的面积. 这样可以列出$n - 1$个不等式. 将每个化成形如$ax + by + c \leqslant 0$的形式. 然后分类讨论($b = 0的时候需要特殊处理$)将它转换成二维平面上的半平面. 接着做半平面交,算面积就好了. Code /** * bzoj * Pr…
[BZOJ4445][Scoi2015]小凸想跑步 Description 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸n边形,N个顶点按照逆时针从0-n-l编号.现在小凸随机站在操场中的某个位置,标记为P点.将P点与n个顶点各连一条边,形成N个三角形.如果这时P点,0号点,1号点形成的三角形的面积是N个三角形中最小的一个,小凸则认为这是一次正确站位. 现在小凸想知道他一次站位正确的概率是多少. Input 第1行包含1个整数n,表示操场的顶点数和游戏的次数.…
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=4445 题解: 设点坐标,利用叉积可以解出当p坐标为\((x_p,y_p)\)时,与边i--(i+1)构成的三角形面积为 \[(y_i - y_{i+1})x_p+(x_{i+1} - x_i)y_p+(x_iy_{i+1}-x_{i+1}y_i)\] 我们又知道三角形\(0 -- 1 -- (p)\)是最小的,所以我们列出不等式后移项变号得 \[(y_0-y_1-y_i+y_{i+1}…
[BZOJ4445][SCOI2015]小凸想跑步(半平面交) 题面 BZOJ 洛谷 题解 首先把点给设出来,\(A(x_a,y_a),B(x_b,y_b),C(x_c,y_c),D(x_d,y_d),P(x,y)\) 然后我们考虑\(S_\Delta ABP<S_\Delta CDP\)什么情况下满足. 根据点积来求面积,得到: \[(x_a-x,y_a-y)\times(x_b-x,y_b-y)<(x_c-x,y_c-y)\times(x_d-x,y_d-y)\] 这个东西左边拆开之后得到…
「SCOI2015」小凸想跑步 最开始以为和多边形的重心有关,后来发现多边形的重心没啥好玩的性质 实际上你把面积小于的不等式列出来,发现是一次的,那么就可以半平面交了 Code: #include <cstdio> #include <cmath> #include <algorithm> #define Vector Point const int N=2e5+10; const double eps=1e-7; int n,m,l,r; struct Point {…
Loj 2008 小凸想跑步 \(S(P,p_0,p_1)<S(P,p_i,p_{i+1})\) 这个约束条件对于 \(P_x,P_y\) 是线性的,即将面积用向量叉积表示,暴力拆开,可得到 \(aP_x+bP_y+c<0\) 的形式,表示了一个半平面,其他每条边都确定了一个半平面. 再将 \(P\) 在多边形内拆成 \(N-1\) 个半平面的限制,将这 \(2N-1\) 个半平面求交,得到的区域即为合法区域,除以总面积即得答案 #include<bits/stdc++.h> us…
#2008. 「SCOI2015」小凸想跑步   题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 n nn 边形,N NN 个顶点按照逆时针从 0∼n−1 0 \sim n - 10∼n−1 编号.现在小凸随机站在操场中的某个位置,标记为 P PP 点.将 P PP 点与 n nn 个顶点各连一条边,形成 N NN 个三角形.如果这时 P PP 点,0 00 号点,1 11 号点形成的三角形的面积是 N NN 个三角形中最小的一个,小凸则认为这是一次正确…
传送门 题意 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 $ n $ 边形,$ n $ 个顶点 $ P_i $ 按照逆时针从 $ 0 $ 至 $ n-1 $ 编号. 现在小凸随机站在操场中的某个位置,标记为 $ P $ 点.将 $ P $ 点与 $ n $ 个顶点各连一条边,形成 $ n $ 个三角形.如果这时 $ (P, P_0, P_1) $ 形成的三角形的面积是 $ n $ 个三角形中最小的一个,小凸则认为这是一次正确站位. 现在小凸想知道他一次站位正确…
题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 nn 边形, nn 个顶点按照逆时针从 00 ∼ n - 1n−1 编号.现在小凸随机站在操场中的某个位置,标记为 pp 点.将 pp点与 nn 个顶点各连一条边,形成 nn 个三角形.如果这时 pp 点, 00 号点, 11 号点形成的三角形的面 积是 nn 个三角形中最小的一个,小凸则认为这是一次正确站位. 现在小凸想知道他一次站位正确的概率是多少. 输入输出格式 输入格式: 第 11 行包含 11 个…
题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 n 边形, nn 个顶点按照逆时针从 0 ∼n−1 编号.现在小凸随机站在操场中的某个位置,标记为p点.将 p 点与 n个顶点各连一条边,形成 n个三角形.如果这时p 点, 0号点, 1号点形成的三角形的面 积是 n个三角形中最小的一个,小凸则认为这是一次正确站位. 现在小凸想知道他一次站位正确的概率是多少. 题解 我们其实是要找到一个p点,使得pp0*pp1<=ppi*ppi+1. 然后我们把上面的式子展…
裸半平面交. 记得把P0P1表示的半平面加进去,否则点可能在多边形外. #include<bits/stdc++.h> #define N 100009 using namespace std; int n,m,u,v; const double eps=1e-8; int sign(double x){ return x<-eps?-1:x>eps; } struct vec{ double x,y; vec(){} vec(double x,double y) :x(x),y(…
题目链接 半平面交,注意直线方向!!! 对于凸包上任意一条边$LINE(p_i,p_{i+1})$都有$S_{\Delta{p_i} {p_{i + 1}}p} < S_{\Delta{p_0} {p_1}p}$ 如果我们用叉积来算面积: $P=(x,y)$ $A=p_0=(x_1,y_1)$ $B=p_1=(x_2,y_2)$ $C=p_{i+1}=(x_3,y_3)$(至于为什么是C为i+1而不是D为i+1,画画图就知道了) $D=p_i=(x_4,y_4)$ 就有不等式: $(x-x_2,…
题意:凸包上一个点\(p\),使得\(p\)和点\(0,1\)组成的三角形面积最小 用叉积来求: \(p,i,i+1\)组成的三角形面积为: (\(\times\)为叉积) \((p_p-i)\times (p_p-p_{i+1})\Rightarrow\) \((x_p-x_i,y_p-y_i)\times(x_p-x_{i+1},y_p-y_{i+1})\Rightarrow\) \((x_p-x_i)(y_p-y_{i+1})-(y_p-y_i)(x_p-x_{i+1})\Rightarr…
题目链接 题意 给你一个凸多边形,求出在其内部选择一个点,这个点与最开始输入的两个点形成的三角形是以该点对凸多边形三角剖分的三角形中面积最小的一个三角形的概率. Sol 答案就是 可行域面积与该凸多边形面积之比. 通过数学方法列出第一个三角形和其他三角形面积关系的式子,解出来发现都是一个半平面,所以我们要做的就是快速求解半平面交. 把所有要加入的直线用向量表示 , 按照极角排序 ( 用 atan2() ) , 然后依次加入直线. 维护一个双端队列 , 每次加入一条直线时判断最左最右的交点和当前直…
题目大意:一个凸包,随机一个点使得其与前两个点组成的面积比与其他相邻两个点组成的面积小的概率 根据题意列方程,最后求n条直线的交的面积与原凸包面积的比值 #include<bits/stdc++.h> #define maxn 100010 #define eps 1e-10 using namespace std; double ans,S1,S2; struct P{ double x,y; P(,){x=a,y=b;} }; struct L{ P a,b; double ang; };…
题面 传送门 题解 设\(p\)点坐标为\(x_p,y_p\),那么根据叉积可以算出它与\((i,i+1)\)构成的三角形的面积 为了保证\(p\)与\((0,1)\)构成的面积最小,就相当于它比其它所有的三角形构成的面积都要小.如果\(p\)与\((0,1)\)构成的面积比\((i,i+1)\)小,代入叉积计算公式,有 \[(y_0-y_1-y_i+y_{i+1})x_p+(x_1-x_0-x_{i+1}+x_i)y_p+(x_0y_1-x_1y_0-x_iy_{i+1}+x_{i+1}y_i…
题解 一道想法很简单的计算几何(由于我半平面交总是写不对,我理所当然的怀疑半平面交错了,事实上是我直线建错了) 首先我们对于两个凸包上的点设为\((x_0,y_0)\)和\((x_1,y_1)\)(逆时针) 设这个点为(x,y)我们用叉积求一下面积 可以得到 \((x_0 - x)(y_1 - y) - (x_1 - x)(y_0 - y)\) \(x_0 y_1 - x_1 y_0 + (y_0 - y_1)x + (x_1 - x_0)y\) 然后我们可以对于每个小三角形都求一个这样的式子,…
题面 题解 推波柿子: 设点\(A(x_a, y_a), B(x_b, y_b), C(x_c, y_c), D(x_d, y_d), P(x, y)\) \(\vec{a} = (x_b - x_a, y_b - y_a), \vec{b} = (x_d - x_c, y_d - y_c)\) \(\overrightarrow{AP} = (x - x_a, y - y_a), \overrightarrow{CP} = (x - x_c, y - y_c)\) \(\vec{a} \tim…
考虑怎样的点满足条件.设其为(xp,yp),则要满足(x0-xp,y0-yp)×(x1-xp,y1-yp)<=(xi-xp,yi-yp)×(xi+1-xp,yi+1-yp)对任意i成立.拆开式子,有(x0-xp)*(y1-yp)-(y0-yp)*(x1-xp)<=(xi-xp)*(yi+1-yp)-(yi-yp)*(xi+1-xp),也即x0y1-x0yp-xpy1-y0x1+y0xp+ypx1<=xiyi+1-xiyp-xpyi+1-yixi+1+yixp+ypxi+1.移项,得(y0…
传送门 话说去年的省选计算几何难度跟前几年比起来根本不能做啊(虽然去年考的时候并没有学过计算几何) 这题就是推个式子然后上半平面交就做完了. 什么? 怎么推式子? 先把题目的概率转换成求出可行区域. 然后用可行区域的面积比上总面积就是答案了. 我们设0号点(x1,y1)(x1,y1)(x1,y1),1号点(x2,y2)(x2,y2)(x2,y2),i号点(x3,y3)(x3,y3)(x3,y3),i+1号点(x4,y4)(x4,y4)(x4,y4) 然后由题可知cross(p0,p1)<cros…
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=1007; 题解 其实就是求每条直线的上半部分的交 所以做裸半平面交即可 #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; inline void read(int &x){ x=0;char ch;boo…
bzoj 4447 小凸解密码 先将原始状态的 \(B\) 处理出来,可以发现,若不修改,则每次指定的起始位置不同,对这个环 \(B\) 带来的影响只有 \(B_0\) 不同,即每次 \(B_0=A_0\) ,其他位置不变.可以询问时修改这个值,询问结束时改回去. 如果要修改,可以发现修改 \(A_i\) 其实只会影响 \(B_i,B_{i+1}\) 的值,也可以较快完成. 只需要用一个 \(set\) 维护环上的零区间,修改,查询时都分情况维护,回答就好了.断环成链(复制一份接在后面)可以减小…
直接写的裸的半平面交,已经有点背不过模板了... 这题卡精度,要用long double ,esp设1e-20... #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #include<map> #include<vector> #define N 20005 #define double lo…
1137: [POI2009]Wsp 岛屿 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 165  Solved: 78[Submit][Status][Discuss] Description Byteotia岛屿是一个凸多边形.城市全都在海岸上.按顺时针编号1到n.任意两个城市之间都有一条笔直的道路相连.道路相交处可以自由穿行.有一些道路被游击队控制了,不能走,但是可以经过这条道路与未被控制的道路的交点.问…
发现最终的结果只和$s1$,$s2$,$s3$之间的比例有关. 所以直接令$s3=1$ 然后就变成了两个变量,然后求一次半平面交. 对于每一个询问所属的直线,看看半平面在它的那一侧,或者相交就可以判断谁会赢比赛. 打了个表QaQ #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream>…
这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方程就可以得出.于是乎这些不等式就可以转化为一些半平面,求的就是半平面交. 而半平面交不可能交出凹多边形(因为凹多边形的定义是有一条边所在的直线能把该多边形分成若干块...YY一下就知道这是不可能的),这是一个十分优美的性质,正类似于凸包(写法也是有些相似的),但半平面交可能交出无界,于是可以加四条类…
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个地毯的圆心. 思路:我们当然希望这两个圆形的地毯离得尽量的远,这种话两个圆之间的重叠区域就会越小,总的覆盖区域就越大. 那我们就先把每一条边向内推进地毯的半径的距离,然后求一次半平面交,这个求出的半平面的交集就是圆心能够取得地方,然后就暴力求出这当中的最远点对即可了. CODE: #include <c…
洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid\)是否合法呢?每一个限制条件形如\(y_{i_1}\le ax_i^2+bx_i\le y_{i_2}\),也就是\(\frac{y_{i_1}}{x_i}\le x_ia+b\le \frac{y_{i_2}}{x_i}\).把\(a,b\)看成自变量,实际上每个不等式就是一个半平面,我们需要求出半平面交…
本来并不打算出原创题的,此题集CF542A和sk的灵感而成,算个半原创吧. 题目大意: 给定有$n$个元素的集合$P$,其中第$i$个元素中包含$L_i,R_i,V_i$三个值. 给定另一个有$n$个元素的集合$Q$,其中第$i$个元素包含$A_i,B_i,C_i$三个值. 选择集合$P$中第$x$个元素和集合$Q$中第$y$个元素的收益为$(r-l+1)*V_x*C_y$,其中$[l,r]$为$[L_i,R_i]$和$[A_i,B_i]$的交集.你需要在集合$P$,$Q$中分别选出一个元素,使…
分析 好像叫V图什么的. 容易发现,对于每个点,其监视的范围就是这个点与其它所有点的垂直平分线分割平面后的半平面交.由于数据范围很小,所以我们可以直接枚举每个点,使用双端队列求出其监视的范围.若两个点的监视范围有公共边,那么就在这两个点之间连一条边,边权为\(1\).然后从起点bfs一遍即可. 这里重点说一下求半平面交的细节,毕竟这是ErkkiErkko这个大菜鸡第一次写半平面交. 可以使用有向的直线,规定直线左侧的平面是合法的区域. 求两条有向直线的交点时,可以使用面积作为中间量进行转换,具体…