转自:AI之路 这篇博客主要介绍SSD算法,该算法是最近一年比较优秀的object detection算法,主要特点在于采用了特征融合. 论文:SSD single shot multibox detector论文链接:https://arxiv.org/abs/1512.02325 算法概述: 本文提出的SSD算法是一种直接预测bounding box的坐标和类别的object detection算法,没有生成proposal的过程.针对不同大小的物体检测,传统的做法是将图像转换成不同的大小,…
SSD: Single Shot MultiBox Detector 作者: Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg 引用: Liu, Wei, et al. "SSD: Single Shot MultiBox Detector." arXiv preprint arXiv:1512.02325 (2015).…
转载自:https://zhuanlan.zhihu.com/p/33544892 前言 目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-stage方法,如R-CNN系算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一系列稀疏的候选框,然后对这些候选框进行分类与回归,two-stage方法的优势是准确度高:(2)one-stage方法,如Yolo和SSD,其主要思路是均匀地在图片的不同位置…
本文转载自: http://www.cnblogs.com/lillylin/p/6207292.html SSD论文阅读(Wei Liu--[ECCV2016]SSD Single Shot MultiBox Detector) 目录 作者及相关链接 文章的选择原因 方法概括 方法细节 相关背景补充 实验结果 与相关文章的对比 总结 作者 intro: ECCV 2016 Oral arxiv: http://arxiv.org/abs/1512.02325 paper: http://www…
论文标题:SSD: Single Shot MultiBox Detector 论文作者:Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,Alexander C. Berg 论文地址:https://arxiv.org/abs/1512.02325 SSD 的GitHub地址:https://github.com/balancap/SSD-Tensorflow 参考的S…
下文图文介绍转自watersink的博文SSD(Single Shot MultiBox Detector)不得不说的那些事. 该方法出自2016年的一篇ECCV的oral paper,SSD: Single Shot MultiBoxDetector,算是一个革命性的方法了,非常值得学习和研究. 论文解析: SSD的特殊之处主要体现在以下3点: (1)多尺度的特征图检测(Multi-scale),如SSD同时使用了上图所示的8*8的特征图和4*4特征图. (2)相比于YOLO,作者使用的是卷积…
By Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg. Introduction SSD is an unified framework for object detection with a single network. You can use the code to train/evaluate a network for o…
SSD是一个基于单网络的目标检测框架,它是基于caffe实现的,所以下面的教程是基于已经编译好的caffe进行编译的. caffe的编译可以参考官网 caffe Installation Installation 1.Get the code. git clone https://github.com/weiliu89/caffe.git (这里会得到一个caffe目录,为了和我们之前的caffe区分,我们下面对其重命名) mv caffe caffe-ssd cd caffe-ssd git…
SSD:Single Shot MultiBox Detector Intro SSD是一套one-stage算法实现目标检测的框架,速度很快,在当时速度超过了yolo,精度也可以达到two-stage的精度,可以与faster rcnn媲美,这套算法里用到了与faster rcnn的anchor相似的概念-default box,也解决了多尺度问题对one-stage的影响-对不同大小的feature map进行滑窗分类,使得不同尺度的feature map的分类器对原图目标尺度更加敏感. o…
今天介绍目标检测中非常著名的一个框架 SSD,与之前的 R-CNN 系列的不同,而且速度比 YOLO 更快. SSD 的核心思想是将不同尺度的 feature map 分成很多固定大小的 box,然后对每个 box 做预测,既要预测该 box 所包含的 object 属于哪一类,也要预测该 box 与真实的 box 之间的偏差. 为了获得更高的检测精度,SSD 利用了多尺度的技巧,既利用了不同尺度的 feature map,也利用了不同尺度的 box,还利用了不同的比率. 论文也给出了说明图,对…