【NMS与IOU代码】】的更多相关文章

# -*- coding: utf-8 -*- import numpy as np def IOU1(A,B): #左上右下坐标(x1,y1,x2,y2) w=max(0,min(A[2],B[2])-max(A[0],B[0])) h=max(0,min(A[3],B[3])-max(A[1],B[1])) areaA=(A[2]-A[0]+1)*(A[3]-A[1]+1) areaB=(B[2]-B[0]+1)*(B[3]-B[1]+1) inter=w*h union=areaA+are…
NMS代码说明(来自Fast-RCNN) 个人觉得NMS包含很多框,其坐标为(x1,y1,x2,y2),每个框对应了一个score,我们将按照score得分降序,并将第一个最高的score的框(我们叫做标准框)作为标准框与其它框对比,即计算出其它框与标准框的IOU值,然后设定阈值,与保留框的最大数量,若超过阈值,就删除该框,以此类推,所选框最大不能超出设定的数量,最后得到保留的框,结束NMS 接下来,请看代码: import numpy as np def py_cpu_nms(dets, th…
1.NMS的原理 NMS(Non-Maximum Suppression)算法本质是搜索局部极大值,抑制非极大值元素.NMS就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的bounding box.NMS是大部分深度学习目标检测网络所需要的,大致算法流程为: 1.对所有预测框的置信度降序排序 2.选出置信度最高的预测框,确认其为正确预测,并计算他与其他预测框的IOU 3.根据2中计算的IOU去除重叠度高的,IOU>threshold就删除 4.剩下的预测框返回第1步,直…
转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初始化参数:args = parse_args() 采用的是Python的argparse 主要有–net_name,–gpu,–cfg等(在cfg中只是修改了几个参数,其他大部分参数在congig.py中,涉及到训练整个网络). cfg_from_file(args.cfg_file) 这里便是代用…
转自https://zhuanlan.zhihu.com/p/42018282 一 NMS NMS算法的大致思想:对于有重叠的候选框:若大于规定阈值(某一提前设定的置信度)则删除,低于阈值的保留.对于无重叠的候选框:都保留. 所谓非极大值抑制:先假设有6个输出的矩形框(即proposal_clip_box),根据分类器类别分类概率做排序,从小到大分别属于车辆的概率(scores)分别为A.B.C.D.E.F. (1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;…
mmdetection源码剖析(1)--NMS 熟悉目标检测的应该都清楚NMS是什么算法,但是如果我们要与C++和cuda结合直接写成Pytorch的操作你们清楚怎么写吗?最近在看mmdetection的源码,发现其实原来写C++和cuda的扩展也不难,下面给大家讲一下. C ++的扩展是允许用户来创建自定义PyTorch框架外的操作(operators )的,即从PyTorch后端分离.此方法与实现本地PyTorch操作的方式不同.C ++扩展旨在为您节省大量与将操作与PyTorch后端集成在…
​  前言  本文介绍了NMS的应用场合.基本原理.多类别NMS方法和实践代码.NMS的缺陷和改进思路.介绍了改进NMS的几种常用方法.提供了其它不常用的方法的链接. 本文很早以前发过,有个读者评论说没有介绍多类别NMS让他不满意,因此特来补充.顺便补充了NMS的缺点和改进思路. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. Non-Maximum Suppression(NMS)非极大值抑制.从字面意思理解,抑制那些非极大值的元素,保留极大…
论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对Faster R-CNN的解读:https://www.cnblogs.com/pursuiting/ 摘要 目标检测依赖于区域proposals算法对目标的位置进行预测.SPPnet和Fast R-CNN已经减少了检测网络的运行时间.然而proposals的计算仍是一个重要的瓶颈.本文提出了一个R…
在region proposal阶段采用不同的iou. 第一幅图,不同颜色的线是用不同的region proposal的iou阈值,横坐标是region proposal生成的框与gt的原始iou,纵坐标是未经过训练的框经过bounding box regression后生成的新框与gt的iou,发现0.5的iou阈值对0.5的的提升更好,0.6的对0.6到0.75的好,0.7对0.75以上的效果好. 第二幅图,不同颜色的线是用不同的region proposal的iou阈值,横坐标是regio…
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 摘要 最先进的目标检测网络依靠区域提出算法来假设目标的位置.SPPnet[1]和Fast R-CNN[2]等研究已经减少了这些检测网络的运行时间,使得区域提出计算成为一个瓶颈.在这项工作中,我们引入了一个区域提出网络(RPN),该网络与检测网络共享全图像的卷积特征,从而使近乎零成本的区域提出成为可能.RPN是一个全卷积网络,可以同时在每个位…