Spark SQL读写方法】的更多相关文章

一.DataFrame:有列名的RDD 首先,我们知道SparkSQL的目的是用sql语句去操作RDD,和Hive类似.SparkSQL的核心结构是DataFrame,如果我们知道RDD里面的字段,也知道里面的数据类型,就好比关系型数据库里面的一张表.那么我们就可以写SQL,所以其实这儿我们是不能用面向对象的思维去编程的.我们最好的方式就是把抽象成为一张表,然后去用SQL语句去操作它. DataFrame的存储方式:它采用的存储是类似于数据库的表的形式进行存储的.一个数据表有几部分组成:1.数据…
Spark SQL可以支持Parquet.JSON.Hive等数据源,并且可以通过JDBC连接外部数据源 一.通过JDBC连接数据库 1.准备工作 ubuntu安装mysql教程 在Linux中启动MySQL数据库: 输入下面SQL语句完成数据库和表的创建: 2.读取mysql数据库中的数据 下载MySQL的JDBC驱动程序,比如mysql-connector-java-5.1.40.tar.gz 把该驱动程序拷贝到spark的安装目录” /usr/local/spark/jars”下 启动一个…
一:前置知识详解: Spark SQL重要是操作DataFrame,DataFrame本身提供了save和load的操作, Load:可以创建DataFrame, Save:把DataFrame中的数据保存到文件或者说与具体的格式来指明我们要读取的文件的类型以及与具体的格式来指出我们要输出的文件是什么类型. 二:Spark SQL读写数据代码实战: import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRD…
一:前置知识具体解释: Spark SQL重要是操作DataFrame,DataFrame本身提供了save和load的操作. Load:能够创建DataFrame. Save:把DataFrame中的数据保存到文件或者说与具体的格式来指明我们要读取的文件的类型以及与具体的格式来指出我们要输出的文件是什么类型. 二:Spark SQL读写数据代码实战: import org.apache.spark.SparkConf; import org.apache.spark.api.java.Java…
Spark SQL主要提供了两个工具来访问hive中的数据,即CLI和ThriftServer.前提是需要Spark支持Hive,即编译Spark时需要带上hive和hive-thriftserver选项,同时需要确保在$SPARK_HOME/conf目录下有hive-site.xml配置文件(可以从hive中拷贝过来).在该配置文件中主要是配置hive metastore的URI(Spark的CLI和ThriftServer都需要)以及ThriftServer相关配置项(如hive.serve…
行列之间的互相转换是ETL中的常见需求,在Spark SQL中,行转列有内建的PIVOT函数可用,没什么特别之处.而列转行要稍微麻烦点.本文整理了2种可行的列转行方法,供参考. 本文链接:https://www.cnblogs.com/hhelibeb/p/10310369.html 测试数据准备 本文的环境是Windows 10, Spark 2.4,开发语言是Python.首先构建一点初始测试数据, from pyspark.sql import SparkSession spark = S…
方法一:利用createDataFrame方法,新增列的过程包含在构建rdd和schema中 方法二:利用withColumn方法,新增列的过程包含在udf函数中 方法三:利用SQL代码,新增列的过程直接写入SQL代码中 方法四:以上三种是增加一个有判断的列,如果想要增加一列唯一序号,可以使用monotonically_increasing_id 代码块: //dataframe新增一列方法1,利用createDataFrame方法 val trdd = input.select(targetC…
强调它与方法一的区别:当DataFrame的数据结构不能够被提前定义.例如:(1)记录结构已经被编码成字符串 (2) 结构在文本文件中,可能需要为不同场景分别设计属性等以上情况出现适用于以下方法.1.people.txt:soyo8, 35小周, 30小华, 19soyo,88 /** * Created by soyo on 17-10-10. * 使用编程方式定义RDD模式 */ import org.apache.spark.sql.types._ import org.apache.sp…
/** * Equality test. * {{{ * // Scala: * df.filter( df("colA") === df("colB") ) * * // Java * import static org.apache.spark.sql.functions.*; * df.filter( col("colA").equalTo(col("colB")) ); * }}} * * @group expr_op…
Apache Spark 和 Apache HBase 是两个使用比较广泛的大数据组件.很多场景需要使用 Spark 分析/查询 HBase 中的数据,而目前 Spark 内置是支持很多数据源的,其中就包括了 HBase,但是内置的读取数据源还是使用了 TableInputFormat 来读取 HBase 中的数据.这个 TableInputFormat 有一些缺点: 一个 Task 里面只能启动一个 Scan 去 HBase 中读取数据: TableInputFormat 中不支持 BulkG…