线性回归&&code】的更多相关文章

# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from certifi import __main__ def cost(x,y,theta=np.zeros((2,1))): m=len(y); J=1.0/(2*m)*sum((x.dot(theta).flatten()-y)**2); return J; def gradientDesc(x,y,theat=np.zeros((2,1)…
现在机器学习算法在分类.回归.数据挖掘等问题上运用的十分广泛,对于初学者来说,可能一听到'算法'或其他的专属名词都感觉高深莫测,以致很多人望而却步,这让很多人在处理很多问题上失去了一个很有用的工具.机器学习的算法并没有那么高深,这里我就用最通俗的语言来细致解释算法的表达的意义,,并且很多人对程序的实现这一部分也会望而却步,网上固然有很多现成的程序,但是鉴于大部分没有注释,所以有时候需要花费很大的精力去解读程序,有时候甚至不得其解,这里我也会对每个讲解的算法的程序进行讲解,大部分是逐行讲解,务必做…
本文根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线性回归模型的影响. ①可视化数据集 本作业的数据集分成三部分: ⓐ训练集(training set),样本矩阵(训练集):X,结果标签(label of result)向量 y ⓑ交叉验证集(cross validation set),确定正则化参数 Xval 和 yval ⓒ测试集(test set)…
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归.多参数线性回归和 逻辑回归的总结版.旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍.     本讲内容: Matlab 实现各种回归函数 ========================= 基本模型 Y=θ0+θ1X1型---线性回归(直线拟合…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
一.预测 先来看看这样一个场景: 假如你手头有一套房子要出售,你咨询了房产中介.中介跟你要了一系列的数据,例如房子面积.位置.楼层.年限等,然后进行一系列计算后,给出了建议的定价. 房产中介是如何帮你定价的? "中介"通过他多年的"从业"经验,知道哪些因素会影响房子的价格,且知道各自的"影响"有多大,于是在接过"你的房子"时,他就能通过自已的经验计算出"价格"了. 当然,这个价格,不同的中介,得到的也不同.…
❄❄❄❄❄❄❄❄[回到目录]❄❄❄❄❄❄❄❄ 本次编程作业中,需要完成的代码有如下几部分: [⋆] warmUpExercise.m - Simple example function in Octave/MATLAB[⋆] plotData.m - Function to display the dataset[⋆] computeCost.m - Function to compute the cost of linear regression[⋆] gradientDescent.m -…
目录 基本形式 求解参数\(\vec\theta\) 梯度下降法 正规方程导法 调用函数库 基本形式 线性回归非常直观简洁,是一种常用的回归模型,大叔总结如下: 设有样本\(X\)形如: \[\begin{pmatrix} x_1^{(1)} & x_2^{(1)} & \cdots &x_n^{(1)}\\ x_1^{(2)} & x_2^{(2)} & \cdots & x_n^{(2)}\\ \vdots & \vdots & \vdo…
线性回归原理复习 1)构建模型               |_> y = w1x1 + w2x2 + -- + wnxn + b        2)构造损失函数               |_> 均方误差        3)优化损失               |_> 梯度下降 实现线性回归的训练 准备真实数据            100样本            x 特征值 形状 (100, 1)  100行1列            y_true 目标值 (100, 1)   …
警告:本文为小白入门学习笔记 数据连接: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex2/ex2.html 数据集是(x(i),y(i)) x = load('ex2x.dat'); y = load('ex2y.dat'); plot(x, y, 'o'); 假设函数(hypothesis function): 接下来用矩阵的形式表示x: m…