F1 分数】的更多相关文章

F1 分数会同时考虑精确率和召回率,以便计算新的分数. 可将 F1 分数理解为精确率和召回率的加权平均值,其中 F1 分数的最佳值为 1.最差值为 0: F1 = 2 * (精确率 * 召回率) / (精确率 + 召回率) 帮助文档 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score…
分类的常用指标有: accuracy:准确率 recall:召回率 precison:精确率 f1score:f1分数,是recall和precison的调和均值. 准确率什么情况下失效? 在正负样本不均衡的情况下,accuracy这个指标有很大的缺陷. 如:正样本990个,负样本10个. 这样好像也没有什么用处哦? 原因是关注正样本还是负样本. 默认是关注正样本,而此时的正样本太多,就算混入几个副样本也无伤大雅. 但大部分情况下是那10个才叫"正样本",比如异常检测里,990个正常,…
11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metrics for Skewed Classes 偏斜类 Skewed Classes 类偏斜情况表现为训练集中有非常多的同一种类的实例,只有很少或没有其他类的实例 示例 例如我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有0.5%的实例是恶性肿瘤.假设我们编写一个非学习而来的算法,在所有情…
19.1  总结和致谢 欢迎来到<机器学习>课的最后一段视频.我们已经一起学习很长一段时间了.在最后视频中,我想快速地回顾一下这门课的主要内容,然后简单说几句想说的话. 作为这门课的结束时间,那么我们学到了些什么呢?在这门课中,我们花了大量的时间介绍了诸如线性回归.逻辑回归.神经网络.支持向量机等等一些监督学习算法,这类算法 具有带标签的数据和样本,比如 x(i).y(i). 然后我们也花了很多时间介绍无监督学习.例如 K-均值聚类.用于降维的主成分分析, 以及当你只有一系列无标签数据 x(i…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 什么是ML策略 机器学习策略简介 情景模拟 假设你正在训练一个分类器,你的系统已经达到了90%准确率,但是对于你的应用程序来说还不够好,此时你有很多的想法去继续改善你的系统 收集更多训练数据 训练集的多样性不够,收集更多的具有多样性的实验数据和更多样化的反例集. 使用梯度下降法训练更长的时间 尝试一个不同的优化算法,例如Adam优化算法. 尝试更大的神经网络或者更小的神经网络 尝试dropout…
------------------------------------------------------------------------------------------------------------------------------------------------------------------- 译文 摘要:在深度卷积网络(ConvNet)的帮助下,边缘检测已经取得了重大进展.基于ConvNet的边缘检测器在标准基准测试中达到了人类水平.我们提供了对于这些检测器输出…
"知物由学"是网易云易盾打造的一个品牌栏目,词语出自汉·王充<论衡·实知>.人,能力有高下之分,学习才知道事物的道理,而后才有智慧,不去求问就不会知道."知物由学"希望通过一篇篇技术干货.趋势解读.人物思考和沉淀给你带来收获的同时,也希望打开你的眼界,成就不一样的你.当然,如果你有不错的认知或分享,也欢迎通过邮件(zhangyong02@corp.netease.com)投稿. 以下是正文: 本文作者:ArturBaćmaga,YND的AI专家. 想象一…
http://blog.csdn.net/pipisorry/article/details/52250760 模型评估Model evaluation: quantifying the quality of predictions 3 different approaches to evaluate the quality of predictions of a model: Estimator score method: Estimators have a score method prov…
基于神经模型的半监督词义消歧 Dayu Yuan  Julian Richardson  Ryan Doherty  Colin Evans  Eric Altendorf Google, Mountain View CA, USA 摘要 确定文本中词语的意图 - 词义消歧(WSD) - 是自然语言处理中长期存在的问题. 最近,研究人员使用从神经网络语言模型中提取的单词向量作为WSD算法的特征,显示了有希望的结果. 但是,文本中每个单词的单词向量的简单平均或串联会丢失文本的顺序和句法信息. 在本…