python 决策树】的更多相关文章

参考文献: [1]Python决策树可视化:GraphViz's executables not found的解决方法…
Python——决策树实战:california房价预测 编译环境:Anaconda.Jupyter Notebook 首先,导入模块: import pandas as pd import matplotlib.pyplot as plt %matplotlib inline 接下来导入数据集: from sklearn.datasets.california_housing import fetch_california_housing housing = fetch_california_…
上一节我们学习knn,kNN的最大缺点就是无法给出数据的内在含义,而使用决策树处理分类问题,优势就在于数据形式非常容易理解. 决策树的算法有很多,有CART.ID3和C4.5等,其中ID3和C4.5都是基于信息熵的,也是我们今天的学习内容,主要是根据通过信息熵划分数据集,再进入递归构造决策树的过程. 1. 信息熵 熵最初被用在热力学方面的,由热力学第二定律,熵是用来对一个系统可以达到的状态数的一个度量,能达到的状态数越多熵越大.香农1948年的一篇论文<A Mathematical Theory…
使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https://github.com/linyi0604/MachineLearning import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.feature_extraction impor…
RID age income student credit_rating Class:buys_computer 1 youth high no fair no 2 youth high no excellent no 3 middle_aged high no fair no 4 senior medium no fair yes 5 senior low yes fair yes 6 senior low yes excellent no 7 middle_aged low yes exce…
from numpy import array from pyspark.mllib.regression import LabeledPoint from pyspark.mllib.tree import DecisionTree, DecisionTreeModel from pyspark import SparkContext from pyspark.mllib.evaluation import BinaryClassificationMetrics sc = SparkConte…
目录 决策树原理 决策树代码(Spark Python) 决策树原理 详见博文:http://www.cnblogs.com/itmorn/p/7918797.html 返回目录 决策树代码(Spark Python) 代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1 # -*-coding=utf-8 -*- from pyspark import SparkConf, SparkContext sc = SparkContext('local')…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
1.安装graphviz.下载地址在:http://www.graphviz.org/.如果你是linux,可以用apt-get或者yum的方法安装.如果是windows,就在官网下载msi文件安装.无论是linux还是windows,装完后都要设置环境变量,将graphviz的bin目录加到PATH,比如我是windows,将C:/Program Files (x86)/Graphviz2.38/bin/加入了PATH 2.安装python插件graphviz: pip install gra…
因为最近实习的需要,所以用python里的sklearn包重新写了一次决策树 工具:sklearn,http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy:将dot文件转化为pdf格式(是为了将形成的决策树可视化)graphviz-2.38,下载解压之后将其中的bin文件的目录添加进环境变量 源代码如下: from sklearn.feature_extraction import DictVectorizerimport csvfrom sklearn…
1.决策树的简介 http://www.cnblogs.com/lufangtao/archive/2013/05/30/3103588.html 2.决策是实现的伪代码 “读入训练数据” “找出每个属性的可能取值” “递归调用建立决策树的函数” “para:节点,剩余样例,剩余属性” if “剩余属性个数为0" return most_of_result else if “剩余样例都属于同一个分类(yes/no)" return yes/no else: ”对于每一个剩余属性,计算该…
剪枝 由于悲观错误剪枝 PEP (Pessimistic Error Pruning).代价-复杂度剪枝 CCP (Cost-Complexity Pruning).基于错误剪枝 EBP (Error-Based Pruning).最小错误剪枝 MEP (Minimum Error Pruning)都是用于分类模型,故我们用降低错误剪枝 REP ( Reduced Error Pruning)方法进行剪枝.它的基本思路是:对于决策树 T 的每棵非叶子树s, 用叶子替代这棵子树.如果s 被叶子替代…
决策树的概念其实不难理解,下面一张图是某女生相亲时用到的决策树: 基本上可以理解为:一堆数据,附带若干属性,每一条记录最后都有一个分类(见或者不见),然后根据每种属性可以进行划分(比如年龄是>30还是<=30),这样构造出来的一棵树就是我们所谓的决策树了,决策的规则都在节点上,通俗易懂,分类效果好. 那为什么跟节点要用年龄,而不是长相?这里我们在实现决策树的时候采用的是ID3算法,在选择哪个属性作为节点的时候采用信息论原理,所谓的信息增益.信息增益指原有数据集的熵-按某个属性分类后数据集的熵.…
本文介绍如何利用决策树/判定树(decision tree)中决策树归纳算法(ID3)解决机器学习中的回归问题.文中介绍基于有监督的学习方式,如何利用年龄.收入.身份.收入.信用等级等特征值来判定用户是否购买电脑的行为,最后利用python和sklearn库实现了该应用. 1.  决策树归纳算法(ID3)实例介绍 2.  如何利用python实现决策树归纳算法(ID3) 1.决策树归纳算法(ID3)实例介绍 首先介绍下算法基本概念,判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属…
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | 法纳斯特(公众号ID:walker398) 作者 | 小F 决策树呈树形结构,是一种基本的回归和分类方法. 决策树模型的优点在于可读性强.分类速度快. 下面通过从「译学馆」搬运的两个视频,来简单了解下决策树. 最后来实战一波,建立一个简单的决策树模型. 01决策树算法 本次主要涉及两类决策树,Quinlan系列决策树和CART决策树. 前者涉及的算法包括ID3算法.C4.5算法及C5.0算…
__author__ = '糖衣豆豆' #决策树 import pandas as pda fname="~/coding/python/data/lesson.csv" dataf=pda.read_csv(fname,encoding="gbk") x=dataf.iloc[:,1:5].as_matrix() y=dataf.iloc[:,5].as_matrix() for i in range(0,len(x)): for j in range(0,len…
决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种.看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多. 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据. 缺点:可能会产生过度匹配的问题. 使用数据类型:数值型和标称型. 简单介绍完毕,让我们来通过一个例子让决策树“原形毕露”. 一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别. 为了解决这个问题,同…
参考: 统计学习方法>第五章决策树]   http://pan.baidu.com/s/1hrTscza 决策树的python实现     有完整程序     决策树(ID3.C4.5.CART.随机森林)    对决策树的python实现进行了详细的介绍 用Python开始机器学习(2:决策树分类算法)     特别 决策树(三)--完整总结(ID3,C4.5,CART,剪枝,替代)   理论   #coding:utf-8 # ID3算法,建立决策树 import numpy as np i…
http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q…
发现帮助新手入门机器学习的一篇好文,首先感谢博主!:用Python开始机器学习(2:决策树分类算法) J. Ross Quinlan在1975提出将信息熵的概念引入决策树的构建,这就是鼎鼎大名的ID3算法.后续的C4.5, C5.0, CART等都是该方法的改进. 熵就是“无序,混乱”的程度.刚接触这个概念可能会有些迷惑.想快速了解如何用信息熵增益划分属性,可以参考这位兄弟的文章:http://blog.csdn.net/alvine008/article/details/37760639 数据…
decsion tree(决策树) 其中每个内部结点表示在一个属性上的测试,每个分支代表一个属性的输出,而每个树叶结点代表类或类的分布.树的最顶层是根节点 连续变量要离散化 机器学习中分类方法的一个重要算法 信息熵: 一个信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者是我么你一无所知的事情,需要了解大量新==>新的度量就等于不确定性的多少 变量的不确定性越大,熵也就越大 ID3 通过信息熵来选择每个节点的判断依据. infomation gain最大则为当前节…
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分.如今我们得到了每一个特征值得信息熵增益,我们依照信息熵增益的从大到校的顺序,安排排列为二叉树的节点.数据集和二叉树的图见下. (二叉树的图是用python的matplotlib库画出来的) 数据集:    决策树: 2.代码实现部分      由于上一节,我们通过chooseBestFeatureToSplit函数已经能够确定…
决策树---ID3算法   决策树: 以天气数据库的训练数据为例. Outlook Temperature Humidity Windy PlayGolf? sunny 85 85 FALSE no sunny 80 90 TRUE no overcast 83 86 FALSE yes rainy 70 96 FALSE yes rainy 68 80 FALSE yes rainy 65 70 TRUE no overcast 64 65 TRUE yes sunny 72 95 FALSE…
最近开始学习机器学习,以下会记录我学习中遇到的问题以及我个人的理解 决策树算法,网上很多介绍,在这不复制粘贴.下面解释几个关键词就好. 信息熵(entropy):就是信息不确定性的多少 H(x)=-ΣP(x)log2[P(x)].变量的不确定性越大,熵就越大. 信息获取量(Information Gain):这是ID3算法中定义的一个选择属性判断结点的算法.Gain(A)=H(D)-HA(D).就是本的信息熵与下一级的信息熵之差.用来确定信息获取量的多少,信息获取量最多的即选择为本级的判断属性.…
决策树的实现太...繁琐了. 如果只是接受他的原理的话还好说,但是要想用代码去实现比较糟心,目前运用了<机器学习实战>的代码手打了一遍,决定在这里一点点摸索一下该工程. 实例的代码在使用上运用了香农熵,并且都是来处理离散数据的,因此有一些局限性,但是对其进行深层次的解析有利于对于代码的运作,python语言的特点及书写肯定是有帮助的. 我们分别从每个函数开始: 计算香农熵 def calcShannonEnt(dataSet): numEntries = len(dataSet) labelC…
数据集如下: 色泽 根蒂 敲声 纹理 脐部 触感 好瓜 青绿 蜷缩 浊响 清晰 凹陷 硬滑 是 乌黑 蜷缩 沉闷 清晰 凹陷 硬滑 是 乌黑 蜷缩 浊响 清晰 凹陷 硬滑 是 青绿 蜷缩 沉闷 清晰 凹陷 硬滑 是 浅白 蜷缩 浊响 清晰 凹陷 硬滑 是 青绿 稍蜷 浊响 清晰 稍凹 软粘 是 乌黑 稍蜷 浊响 稍糊 稍凹 软粘 是 乌黑 稍蜷 浊响 清晰 稍凹 硬滑 是 乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑 否 青绿 硬挺 清脆 清晰 平坦 软粘 否 浅白 硬挺 清脆 模糊 平坦 硬滑 否 浅白…
作为机器学习中可解释性非常好的一种算法,决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系. 一.初识决策树 决策树是一种树形结构,一般的,一棵决策树包含一个根结点,若干个内部结点和若干个叶结点: 叶结点:树的一个方向的…
我们经常使用决策树处理分类问题,近年来的调查表明决策树也是经常使用的数据挖掘算法K-NN可以完成多分类任务,但是它最大的缺点是无法给出数据的内在含义,决策树的主要优势在于数据形式非常容易理解决策树的优缺点:优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据缺点:可能会产生过度匹配问题适用数据类型:数值型和标称型在构造决策树时,我们需要解决的第一个问题是,当前数据集上哪个特征在划分数据分类时起决定性作用.为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征…
python利用决策树进行特征选择(注释部分为绘图功能),最后输出特征排序: import numpy as np import tflearn from tflearn.layers.core import dropout from tflearn.layers.normalization import batch_normalization from tflearn.data_utils import to_categorical from sklearn.model_selection i…
算法部分不再细讲,之前发过很多: [算法系列]决策树 决策树(Decision Tree)ID3算法 决策树(Decision Tree)C4.5算法 决策树(Decision Tree)CART算法 ID3.C4.5.CART三种决策树的区别 实验: 导入需要用到的python库 import numpy as np import matplotlib.pyplot as plt import pandas as pd 导入数据集 dataset = pd.read_csv('Social_N…