Caffe和py-faster-rcnn日常使用备忘录】的更多相关文章

看了py-faster-rcnn上的issue,原来大家都遇到各种问题. 我要好好琢磨一下,看看到底怎么样才能更好地把GPU卡发挥出来.最近真是和GPU卡较上劲了. 上午解决了g++的问题不是. 然后下午我就想我要解决掉yml加载不上的问题.就是easydict版本太低了,可以改代码,也可以从新安装.conda install -c verydeep easydict. 参考:https://github.com/rbgirshick/py-faster-rcnn/issues/201 还有一个…
真是好事多磨啊,计算机系统依然是14.04,而cuda依然是8.0,唯一不同的是时间不一样,下载的各种库版本有差别,GPU的driver不一样. 但是这样就出问题了,py-faster rcnn的lib库编译时总是提示错误. 网上搜了开始的相关帖子都提示说是gcc的版本问题,但是我后来问了一下在原来单位的同事,gcc的版本也没问题,版本和原来用的一样.后来我把cython卸载(0.26.1),从新安装旧版本(0.19.1)依然同样的错误,我没有继续追究版本问题.昨天看到github上的一个帖子说…
直接按照官网https://github.com/rbgirshick/py-faster-rcnn上的教程对faster Rcnn进行编译的时候,会发有一些层由于cudnn版本的更新,会报错如下: /cudnn_sigmoid_layer.cu(13): error: argument of type "cudnnActivationMode_t" is incompatible with parameter of type "cudnnActivationDescript…
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的成功能否迁移到PASCAL VOC的目标检测任务上呢?基于这个问题,论文提出了R-CNN. 基本步骤:如下图所示,第一步输入图像.第二步使用生成region proposals的方法(有很多,论文使用的是seletivce search,ImageNet2013检测任务的冠军UVA也使用了该算法)提…
目录 1. 准备工作 2. VS2013编译Caffe 3. Faster R-CNN的MATLAB源码测试 说实话,费了很大的劲,在调试的过程中,遇到了很多的问题: 幸运的是,最终还是解决了问题: 这是一篇关于在Windows下Faster R-CNN的MATLAB源码(该项目已不再维护)调试的笔记,目前只在CPU上Testing通过: GPU版本见:Widows下Faster R-CNN的MATALB配置(GPU) 由于机器配置的原因,没有涉及到Faster R-CNN的Training问题…
参考博客:::https://www.cnblogs.com/Dzhen/p/6845852.html 非常全面的解读参考:::https://blog.csdn.net/DaVinciL/article/details/81812454 下面我和大家一起从训练最开始学习作者如何将原始数据读入并通过RoIDataLayer转化成网络训练所需的数据的总体过程. 训练从./tools/train_net.py开始,进入主函数,我们只关注跟数据有关的模块. 首先是imdb, roidb = combi…
本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于caffe). (亲测有效,记录经历两天的吐血经历) https://www.cnblogs.com/elitphil/p/11527732.html caffe学习二:py-faster-rcnn配置运行faster_rcnn_end2end-VGG_CNN_M_1024 (Ubuntu16.04)…
兜兜转转,兜兜转转; 一次有一次,这次终于把Faster R-CNN 跑通了. 重要提示1:在开始跑Faster R-CNN之前一定要搞清楚用的是Python2 还是Python3. 不然你会无限次陷入一下错误: from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \ImportError: dynamic module does not define module export function (PyInit_…
罗列日常使用中遇到的问题和解决办法.包括: { caffe使用中的疑惑和解释: 无法正常执行 train/inference 的情况: Caffe基础工具的微小调整,比如绘loss曲线图: 调试python代码技巧,基于vscode; py-faster-rcnn在自己数据集上调参技巧 py-faster-rcnn因为numpy版本.自己数据集等各种原因导致的坑和解决办法 py-faster-rcnn本身细节的各种坑 调试matcaffe的技巧 protobuf版本的坑 ... } 保持更新.…
前言 比较简单的一篇博客.https://github.com/microsoft/caffe 微软的Caffe以在Windows下编译简单而受到了很多人的喜爱(包括我),只用改改prop配置然后无脑重新生成就可以.今天配置了一下Faster R-CNN,还挺好用的. 这里以CPU版本的为例,GPU的一样. 效果 CPU版本的当然很慢.放图: 编译Caffe 有几个地方需要注意.其一是我建议大家采用2016年7月之后的Microsoft Caffe版本,因为在此之后这个Caffe分支添加了roi…