题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html https://www.cnblogs.com/Mychael/p/9216906.html 注意取模那里的 NTT 范围就是模数的次数: 各处注意一下对系数数组取模(超出的位置赋0). 代码如下: #include<iostream> #include<cstdio> #include&l…
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q)\leq n-m\)的多项式\(Q(x)\),满足\[A(x)=D(x)\times Q(x)+R(x)\] 其中\(R(x)\)可以看做是\(m-1\)次多项式(不足\(m-1\)次系数补\(0\)). 首先是想消除\(R(x)\)的影响. 对于一个\(n\)次多项式\(A(x)\),记\[A^R(x)=…
题目大意:给定一个$n$次多项式$F(x)$和一个$m$次多项式$G(x)$,请求出多项式$Q(x),R(x)$,满足: 1. $Q(x)$次数为$n-m$,$R(x)$次数小于$m$2. $F(x)=Q(x)\times G(x)+R(x)$ 题解:多项式除法.$$F(x)\equiv Q(x)G(x)+R(x)(\bmod{x^n})\\F(\dfrac 1 x)\equiv Q(\dfrac 1 x)G(\dfrac 1 x)+R(\dfrac 1 x)(\bmod{x^n})\\x^nF…
思路 多项式除法板子 多项式除法 给出\(A(x)\)和\(B(x)\),求一个\(n-m\)次的多项式\(D(x)\),一个\(m-1\)次多项式\(R(x)\),满足 \[ A(x)=B(x)D(x)+R(x) \] 定义\(D^R(x)\)为多项式\(D(x)\)系数反转的结果,可证\(D^R(x)=x^nD(\frac{1}{x})\) 所以 \[ \begin{align}&A(x)=B(x)D(x)+R(x)\\&A(\frac{1}{x})=B(\frac{1}{x})D(\…
题解 前置技能 1.多项式求逆 求\(f(x)\*g(x) \equiv 1 \pmod {x^{t}}\) 我们在t == 1时,有\(f[0] = frac{1}{g[0]}\) 之后呢,我们倍增一下,假如新的答案是\(g'(x)\)在\(\pmod {x^{2t}}\)意义下,显然有 \(g'(x) - g(x) \equiv 0 \pmod {x^{t}}\) 我们两边平方一下 \(g'^{2}(x) - 2g'(x)g(x) + g^{2}(x) \equiv 0 \pmod {x^{…
前言 emmm又是暂无 前置 多项式求逆 多项式除法/取模目的 还是跟之前一样顾名思义] 给定一个多项式F(x),请求出多项式Q(x)和R(x),满足F(x)=Q(x)∗G(x)+R(x),R项数小于G,系数对998244353取模. 多项式除法/取模主要思路 先考虑一个多项式的反转操作 就是一个多项式系数前后调换 定义这个反转的操作下标加个 R 显然FR(x)=xnF(1/x) 接着推式子 F(x)=Q(x)∗G(x)+R(x) F(1/x)=Q(1/x)∗G(1/x)+R(1/x) xnF(…
想法: 1 由于所有a[i] 是不为0的整数 所以解x是整数 2 其次解是an的约数 3 分解a[n] 用多项式除法判断约数是否为整式的解 #include<cstdio> #include<algorithm> #include<cmath> using namespace std; typedef long long LL; LL a[]; LL b[]; int n; bool isok(LL x) { ;i<=n;i++) b[i]=a[i]; ;i<…
题目地址 前言 原理有大佬写了 所以蒟蒻只讲下本题的代码细节 我看懂的大佬博客:博客地址 因为可能知道了大致的步骤还有很多细的地方不理解导致写的时候要花很久并且看到大佬们好像都是用递归写的希望能有帮助吧 背景 由于我太菜了实在看不懂其他大佬的代码只能自己写于是因为很多的细节原因和并一些大佬的奇异写法误导调了N+个小时# 详细的地方还是看代码里面说明吧因为没怎么优化常数比较大吧有写代码是可以简化的 #include<bits/stdc++.h> using namespace std; #def…
手动博客搬家: 本文发表于20181206 14:42:53, 原地址https://blog.csdn.net/suncongbo/article/details/84853342 题目链接: https://www.luogu.org/problemnew/show/P4512 没想到这算法这么蠢..一点都不难啊..我连这都推不出来我是不是没救了 这个多项式满足\(A(x)=B(x)Q(x)+R(x)\), 如果已知\(R(x)\)是\(0\), 那显然很好处理,求个逆就行了. 那如果有余数…
传送门 解析 代码: #include<bits/stdc++.h> #define ri register int using namespace std; typedef long long ll; #define add(a,b) ((a)+(b)>=mod?(a)+(b)-mod:(a)+(b)) #define dec(a,b) ((a)>=(b)?(a)-(b):(a)-(b)+mod) #define mul(a,b) ((ll)(a)*(b)%mod) inline…