首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
用主题模型可视化分析911新闻(Python版)
】的更多相关文章
用主题模型可视化分析911新闻(Python版)
本文由 伯乐在线 - 东狗 翻译,toolate 校稿.未经许可,禁止转载!英文出处:blog.dominodatalab.com.欢迎加入翻译小组. 本文介绍一个将911袭击及后续影响相关新闻文章的主题可视化的项目.我将介绍我的出发点,实现的技术细节和我对一些结果的思考. 简介 近代美国历史上再没有比911袭击影响更深远的事件了,它的影响在未来还会持续.从事件发生到现在,成千上万主题各异的文章付梓.我们怎样能利用数据科学的工具来探索这些主题,并且追踪它们随着时间的变化呢? 灵感 首先提出这个问…
算法工程师进化-NLP之主题模型
1 引言 主题模型是文本挖掘的重要工具,近年来在学术界和工业届都获得了非常多的关注.学术界的工作主要集中在建模层面,即提出各种各样的主题模型来适应不同的场景,因此缺乏指导主题模型在工业场景落地的资源和文献. 本文主要是以<Familia:开源的中文主题模型应用工具包>为参考资料,入门NLP领域.该文结合开源工具Familia(百度开源),总结主题模型在工业届的一些典型应用案例,从而方便用户找到适合自己任务的模型以及该模型的应用方式. 2 主题模型概念 以LDA为代表的主题模型,训练的结果一般是…
主题模型 LDA 入门
主题模型 LDA 入门(附 Python 代码) 一.主题模型 在文本挖掘领域,大量的数据都是非结构化的,很难从信息中直接获取相关和期望的信息,一种文本挖掘的方法:主题模型(Topic Model)能够识别在文档里的主题,并且挖掘语料里隐藏信息,并且在主题聚合.从非结构化文本中提取信息.特征选择等场景有广泛的用途. 主题可以被定义为“语料库中具有相同词境的词的集合模式”,比如说,主题模型可以 将“健康”,“医生”,“病人”,“医院” 集合成 “医疗保健” 主题 将 “农场”,“玉米”,“小麦…
主题模型之潜在语义分析(Latent Semantic Analysis)
主题模型(Topic Models)是一套试图在大量文档中发现潜在主题结构的机器学习模型,主题模型通过分析文本中的词来发现文档中的主题.主题之间的联系方式和主题的发展.通过主题模型可以使我们组织和总结无法人工标注的海量电子文档.较早的主题模型有混合语言模型(Mixture of Unigram),潜在语义索引(Lantent Semantic Index,LSI),概率潜在语义索引(Probabilistic Latent Semantic Indexing,PLSI).主题模型中文档是由主题组…
百度开源其NLP主题模型工具包,文本分类等场景可直接使用L——LDA进行主题选择本质就是降维,然后用于推荐或者分类
2017年7月4日,百度开源了一款主题模型项目,名曰:Familia. InfoQ记者第一时间联系到百度Familia项目负责人姜迪并对他进行采访,在本文中,他将为我们解析Familia项目的技术细节. 什么是Familia Familia 开源项目包含文档主题推断工具.语义匹配计算工具以及基于工业级语料训练的三种主题模型:Latent Dirichlet Allocation(LDA).SentenceLDA 和Topical Word Embedding(TWE). Familia支持用户以…
R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模型有这么几个未解决的问题: 1.LDA主题数量,多少个才是最优的. 2.作出主题之后,主题-主题,主题与词语之间关联如何衡量. 于是在查阅几位老师做的成果之后,将他们的成果撮合在一起.笔者发现R里面目前有两个包可以做LDA模型,是lda包+topicmodels包,两个包在使用的过程中,需要整理的数…
python 全栈开发,Day44(IO模型介绍,阻塞IO,非阻塞IO,多路复用IO,异步IO,IO模型比较分析,selectors模块,垃圾回收机制)
昨日内容回顾 协程实际上是一个线程,执行了多个任务,遇到IO就切换 切换,可以使用yield,greenlet 遇到IO gevent: 检测到IO,能够使用greenlet实现自动切换,规避了IO阻塞问题. 昨天没有讲到的小问题,看下面的例子: import gevent def func(): print('eating') gevent.spawn(func) # 协程任务开启 执行程序,没有输出结果 加上join import gevent def func(): print('eati…
{python之IO多路复用} IO模型介绍 阻塞IO(blocking IO) 非阻塞IO(non-blocking IO) 多路复用IO(IO multiplexing) 异步IO(Asynchronous I/O) IO模型比较分析 selectors模块
python之IO多路复用 阅读目录 一 IO模型介绍 二 阻塞IO(blocking IO) 三 非阻塞IO(non-blocking IO) 四 多路复用IO(IO multiplexing) 五 异步IO(Asynchronous I/O) 六 IO模型比较分析 七 selectors模块 一 IO模型介绍 同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题…
玩转python主题模型程序库gensim
gensim是python下一个极易上手的主题模型程序库(topic model),网址在:http://radimrehurek.com/gensim/index.html 安装过程较为繁琐,参考http://radimrehurek.com/gensim/install.html 中的步骤. 我本机用的python2.7,需安装setuptools或者pip,然后通过这2个工具安装numpy和scipy,因为gensim里面依赖科学/数值计算.其中scipy还需要安装BLAS和LAPACK这…
PLUTO平台是由美林数据技术股份有限公司下属西安交大美林数据挖掘研究中心自主研发的一款基于云计算技术架构的数据挖掘产品,产品设计严格遵循国际数据挖掘标准CRISP-DM(跨行业数据挖掘过程标准),具备完备的数据准备、模型构建、模型评估、模型管理、海量数据处理和高纬数据可视化分析能力。
http://www.meritdata.com.cn/article/90 PLUTO平台是由美林数据技术股份有限公司下属西安交大美林数据挖掘研究中心自主研发的一款基于云计算技术架构的数据挖掘产品,产品设计严格遵循国际数据挖掘标准CRISP-DM(跨行业数据挖掘过程标准),具备完备的数据准备.模型构建.模型评估.模型管理.海量数据处理和高纬数据可视化分析能力. Pluto平台设计严格遵循国际数据挖掘标准CRISP-DM(跨行业数据挖掘过程标准).Pluto强大的数据挖掘功能将复杂的统计方法和机…