引自Pytorch tutorial: Data Loading and Processing Tutorial 这节主要介绍数据的读入与处理. 数据描述:人脸姿态数据集.共有69张人脸,每张人脸都有68个点 .可视化其中一张如下: 一.数据读取 这些图像名字与散点坐标存于 face_landmarks.csv 文件中,所以需要利用pandas库来分析. 引入需要的库: from __future__ import print_function, division import os impor…
前言 上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1.自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset.且须实现__len__()和__getitem__()两个方法. 2.利用torchvision包.torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet.COCO.MNIST.LSUN等数据集,可通过诸如torchvision.data…
上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1. 自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset.且须实现__len__()和__getitem__()两个方法. 2. 利用torchvision包.torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet.COCO.MNIST.LSUN等数据集,可通过诸如torchvision.datas…
参考:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html DATA LOADING AND PROCESSING TUTORIAL 在解决任何机器学习问题时,都需要花费大量的精力来准备数据.PyTorch提供了许多工具来简化数据加载,希望能使代码更具可读性.在本教程中,我们将看到如何加载和预处理/增强非平凡数据集中的数据. 为了运行下面的教程,请确保你已经下载了下面的数据包: scikit-image:为了图片的输入…
引自官方:  Transfer Learning tutorial Ng在Deeplearning.ai中讲过迁移学习适用于任务A.B有相同输入.任务B比任务A有更少的数据.A任务的低级特征有助于任务B.对于迁移学习,经验规则是如果任务B的数据很小,那可能只需训练最后一层的权重.若有足够多的数据则可以重新训练网络中的所有层.如果重新训练网络中的所有参数,这个在训练初期称为预训练(pre-training),因为事先利用任务A的权重初始化.在预训练的基础上更新权重,那么这个过程叫微调(fine t…
这里使用pytorch进行一个简单的二分类模型 导入所有我们需要的库 import torch import matplotlib.pyplot as plt import torch.nn.functional as F 接着我们这里 生成我们需要的假数据 # set seed torch.manual_seed(1) # make fake data n_data = torch.ones(100, 2) x0 = torch.normal(2 * n_data, 1) y0 = torch…
It is really useful to save and reload the model and its parameters during or after training in deep learning. Pytorch provides two methods to do so. 1. Only restore the parameters (recommended) torch.save(the_model.state_dict(), PATH) # save paramet…
这里用torch 做一个最简单的测试 目标就是我们用torch 建立一个一层的网络,然后拟合一组可以回归的数据 import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) y = x.pow(2) + 0.2*torch.r…
本节翻译自:https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-5/ 在前一节最后,我们实现了一个将网络输出转换为检测预测的函数.现在我们已经有了一个检测器了,剩下的就是创建输入和输出的流程. 必要条件: 1.此系列教程的Part1到Part4. 2.Pytorch的基本知识,包括如何使用nn.Module,nn.Sequential,torch.n…
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Awesome-pytorch-list Pytorch & related libraries pytorch : Tensors and Dynamic neural networks in Python with strong GPU acceleration. pytorch extras :…