Question Of AI Model Training】的更多相关文章

1 模型训练基本步骤 准备原始数据,定义神经网络结构及前向传播算法 定义loss,选择反向传播优化算法 生成Session,在训练数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 2 模型训练难点及解决方法 2.1 收敛速度慢,训练时间长 深度学习其实就是一个反复调整模型参数的过程,得力于GPU等硬件性能的提升,使得复杂的深度学习训练成为了可能.收敛速度过慢,训练时间过长,一方面使得相同总训练时间内的迭代次数变少,从而影响准确率,另一方面使得训练次数变少,从而减少了尝试…
About this Course AI is not only for engineers. If you want your organization to become better at using AI, this is the course to tell everyone--especially your non-technical colleagues--to take. In this course, you will learn: The meaning behind com…
Paper [1]: White-box neural network attack, adversaries have full access to the model. Using Gradient Descent going back to update the input so that reconstructing the original training data. About black-box attack, they mentioned using numeric gradi…
People commonly tend to put much effort on hyperparameter tuning and training while using Tensoflow&Deep Learning. A realistic problem for TF is how to integrate models into industry: saving pre-trained models, restoring them when necessary, and doin…
Training LeNet on MNIST with Caffe We will assume that you have Caffe successfully compiled. If not, please refer to the Installation page. In this tutorial, we will assume that your Caffe installation is located at CAFFE_ROOT. Prepare Datasets You w…
step01_formula # -*- coding: utf-8 -*- """ 단순 선형회귀방정식 : x(1) -> y - y = a*X + b (a:기울기, b:절편) - error = Y - y """ import tensorflow as tf # 변수 정의 X = tf.placeholder(tf.float32) # 입력 : shape 생략 Y = tf.placeholder(tf.float32…
A Recipe for Training Neural Networks Andrej Karpathy blog  2019-04-27 09:37:05 This blog is copied from:https://karpathy.github.io/2019/04/25/recipe/ Some few weeks ago I posted a tweet on “the most common neural net mistakes”, listing a few common…
https://blog.csdn.net/starzhou/article/details/78845931 The Wide and Deep Learning Model(译文+Tensorlfow源码解析) 原创 2017年11月03日 22:14:47 标签: 深度学习 / 谷歌 / tensorflow / 推荐系统 / 397 编辑 删除 Author: DivinerShi 本文主要讲解Google的Wide and Deep Learning 模型.本文先从原始论文开始,先一步…
Generalized linear models with nonlinear feature transformations (特征工程 + 线性模型) are widely used for large-scale regression and classification problems with sparse inputs. Memorization of feature interactions (线性模型中学习到的特征系数解释性强)through a wide set of cr…
第一部分:从RNN到LSTM 1.什么是RNN RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的.在传统的神经网络模型中,从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的.但是这种普通的神经网络对于很多关于时间序列的问题却无能无力.例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的.RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关.具体的表现形式为网络会对…