深度学习算子优化-FFT】的更多相关文章

作者:严健文 | 旷视 MegEngine 架构师 背景 在数字信号和数字图像领域, 对频域的研究是一个重要分支. 我们日常"加工"的图像都是像素级,被称为是图像的空域数据.空域数据表征我们"可读"的细节.如果我们将同一张图像视为信号,进行频谱分析,可以得到图像的频域数据. 观察下面这组图 (来源),频域图中的亮点为低频信号,代表图像的大部分能量,也就是图像的主体信息.暗点为高频信号,代表图像的边缘和噪声.从组图可以看出,Degraded Goofy 与 Goofy…
深度学习优化器 深度学习中的优化器均采用了梯度下降的方式进行优化,所谓炼丹我觉得优化器可以当作灶,它控制着火量的大小.形式与时间等. 初级的优化器 首先我们来一下看最初级的灶台(100 - 1000 元) Batch Gradient Descent (BGD) 名字叫做批梯度下降,实际上每次迭代会使用全部的数据来更新梯度(应该是取所有数据的平均梯度),具体公式如下: \[\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta) \] 伪代码如…
深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization?     深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新.为了训好模型,我们需要非常谨慎地去设定学习率.初始化权重.以及尽可能细致的参数更新策略. 对于每一层网络得到输出向…
GEMM与AutoKernel算子优化 随着AI技术的快速发展,深度学习在各个领域得到了广泛应用.深度学习模型能否成功在终端落地应用,满足产品需求,一个关键的指标就是神经网络模型的推理性能.一大波算法工程师为了算法的部署转岗算子优化工程师.优化代码并不是一件简单的事,要求工程师既要精通计算机体系架构,又要熟悉算法的计算流程,稍微有经验的深度学习推理优化工程师都成了各家公司争抢的"香饽饽".需求多,算子优化自动化成为了未来的一大趋势. 为了方便更多的工程师进行推理优化,一个致力于降低优化…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/development set).测试集(test set). 对于传统的机器学习算法,数据量(比如100.1000.10000),常用的分法是70%训练集/30%测试集.60%训练集/20%验证集/20%测试集. 对于大数据(比如100万),可能分法是98%训练集/1%验证集/1%测试集.99.5%训练集/0.…
2016年被称为人工智能的元年,2017年是人能智能应用的元年:深度学习技术和应用取得飞速发展:深度学习在互联网教育场景也得到广泛应用.本文主要介绍机器学习及深度学习之定义及基本概念.相关网络结构等. 本文主要内容包括机器学习的定义及组成分类.深度学习的定义.深度学习和机器学习的区别.神经网络基本概念及基本结构.深度学习的相关核心概念(基本假设.数据集.表示.泛化.容量.优化.超参数.误差.欠拟合.过拟合.正则化).两种典型深度网络结构(CNN.RNN)基本介绍. 引言 人工智能究竟能够做什么?…
在自己完成的几个有关深度学习的Demo中,几乎都出现了batch_size,iterations,epochs这些字眼,刚开始我也没在意,觉得Demo能运行就OK了,但随着学习的深入,我就觉得不弄懂这几个基本的概念,对整个深度学习框架理解的自然就不够透彻,所以今天让我们一起了解一下这三个概念. 1.batch_size 深度学习的优化算法,用大白话来说其实主要就是梯度下降算法,而每次的参数权重更新主要有两种方法. (1)遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度 这种方法…
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen NLP,用于概率图模型的Pyro,扩展了PyTorch的功能.通过学习<深度学习入门之PyTorch>,可以从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型.学到机器学习中的线性回归和 Logistic 回归.深度…
步骤零:安装anaconda.opencv.pytorch(这些不详细说明).复制运行代码,如果没有报错,说明已经可以了.不过大概率不行,我的会报错提示AssertionError: Torch not compiled with CUDA enabled.说明需要安装CUDA,或者安装的pytorch版本是不带CUDA的版本,需要按照以下步骤操作. 步骤一:安装CUDA 步骤二:安装cuDDN 步骤三:测试运行代码 附:电脑不支持CUDA或者不想用gpu加速深度学习的 安装CUDA 这就是用来…