Spark Stage 的划分】的更多相关文章

Spark作业调度 对RDD的操作分为transformation和action两类,真正的作业提交运行发生在action之后,调用action之后会将对原始输入数据的所有transformation操作封装成作业并向集群提交运行.这个过程大致可以如下描述: 由DAGScheduler对RDD之间的依赖性进行分析,通过DAG来分析各个RDD之间的转换依赖关系 根据DAGScheduler分析得到的RDD依赖关系将Job划分成多个stage 每个stage会生成一个TaskSet并提交给TaskS…
一.前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖. Spark中的Stage其实就是一组并行的任务,任务是一个个的task . 二.具体细节 窄依赖 父RDD和子RDD partition之间的关系是一对一的.或者父RDD一个partition只对应一个子RDD的partition情况下的父RDD和子RDD partition关系是多对一的.不会有shuffle的产生.父RDD的一个分区去到子RDD的一个分区. 宽依赖 父RDD与子RDD partition之间的关系是一对多…
注意:此文的stage划分有错,stage的划分是以shuffle操作作为边界的,可以参考<spark大数据处理技术>第四章page rank例子! 参考:http://litaotao.github.io/deep-into-spark-exection-model 我们用一个例子来说明,结合例子和运行截图来理解. 1.1 例子,美国 1880 - 2014 年新生婴儿数据统计 目标:用美国 1880 - 2014 年新生婴儿的数据来做做简单的统计 数据源:https://catalog.d…
上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RDD的整体概括 文档说明如下: RDD全称Resilient Distributed Dataset,即分布式弹性数据集.它是Spark的基本抽象,代表不可变的可分区的可并行计算的数据集. RDD的特点: 1. 包含了一系列的分区 2. 在每一个split上执行函数计算 3. 依赖于其他的RDD 4.…
一:RDD的依赖关系 1.在代码中观察 val data = Array(1, 2, 3, 4, 5) val distData = sc.parallelize(data) val resultRDD = distData.flatMap(v => (1 to v)).map(v => (v%2,1)).reduceByKey(_+_) resultRDD.toDebugString ## 查看RDD的依赖情况 2.解释 +—处表示,这是两个不同的stage 同时可以知道shuffledRD…
stage的划分是以shuffle操作作为边界的,遇到一个宽依赖就分一个stage 一个Job会被拆分为多组Task,每组任务被称为一个Stage就像Map Stage, Reduce Stage.Stage的划分在RDD的论文中有详细的介绍,简单的说是以shuffle和result这两种类型来划分.在Spark中有两类task,一类是shuffleMapTask,一类是resultTask,第一类task的输出是shuffle所需数据,第二类task的输出是result,stage的划分也以此…
RDD根据对父RDD的依赖关系,可分为窄依赖与宽依赖2种. 主要的区分之处在于父RDD的分区被多少个子RDD分区所依赖,如果一个就为窄依赖,多个则为宽依赖.更好的定义应该是: 窄依赖的定义是子RDD的每一个分区都依赖于父RDD的一个或者少量几个分区(不依赖于全部分区) 与依赖相关的以下5个类: Dependency <--NarrowDependency <--OneToOneDependency <--RangeDependency <--ShuffleDependency 它们…
窄依赖 父RDD和子RDD partition之间的关系是一对一的,或者父RDD一个partition只对应一个子RDD的partition情况下的父RDD和子RDD partition关系是多对一的. 不会有shuffle的产生,父RDD的一个分区去到子RDD的一个分区. 多对一或者一对一 可以理解为独生子女 宽依赖 父RDD与子RDD partition之间的关系是一对多. 会有shuffle的产生,父RDD的一个分区的数据去到子RDD的不同分区里面. 一对多 可以理解为超生 常见的宽窄依赖…
Spark中的任务管理是很重要的内容,可以说想要理解Spark的计算流程,就必须对它的任务的切分有一定的了解.不然你就看不懂Spark UI,看不懂Spark UI就无法去做优化...因此本篇就从源码的角度说说其中的一部分,Stage的切分--DAG图的创建 先说说概念 在Spark中有几个维度的概念: 应用Application,你的代码就是一个应用 Job,Job是以action为边界的. Stage,是按照宽窄依赖来界定的 Task,最终落实到各个工作节点上的任务,是真正意义上的任务 光说…
IDEA 创建scala spark的Mvn项目:https://blog.csdn.net/u014646662/article/details/84618032 Spark详解03Job 物理执行图:https://www.jianshu.com/p/c1ee13c50b7a Spark Stage的划分: https://www.zhihu.com/people/hu-de-cheng-35/activities 资源调度和任务调度流程:https://zhuanlan.zhihu.com…